Hamed Alemansour, S. Moheimani, J. Owen, J. Randall, E. Fuchs
{"title":"High signal-to-noise ratio differential conductance spectroscopy","authors":"Hamed Alemansour, S. Moheimani, J. Owen, J. Randall, E. Fuchs","doi":"10.1116/6.0000823","DOIUrl":null,"url":null,"abstract":"The scanning tunneling microscope (STM) has enabled manipulation and interrogation of surfaces with atomic-scale resolution. Electronic information about a surface is obtained by combining the imaging capability of the STM with scanning tunneling spectroscopy, i.e., measurement of current-voltage (I/V) characteristics of the surface. We propose a change in the STM feedback loop that enables capturing a higher quality dI/dV image. A high frequency dither voltage is added to the bias voltage of the sample, and the fundamental frequency component of the resulting current is demodulated. The in-phase component of this signal is then plotted along with the X and Y position data, constructing the dI/dV image. We show that by incorporating notch filters in the STM feedback loop, we may utilize a high-amplitude dither voltage to significantly improve the quality of the obtained dI/dV image.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"25 1","pages":"010601"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The scanning tunneling microscope (STM) has enabled manipulation and interrogation of surfaces with atomic-scale resolution. Electronic information about a surface is obtained by combining the imaging capability of the STM with scanning tunneling spectroscopy, i.e., measurement of current-voltage (I/V) characteristics of the surface. We propose a change in the STM feedback loop that enables capturing a higher quality dI/dV image. A high frequency dither voltage is added to the bias voltage of the sample, and the fundamental frequency component of the resulting current is demodulated. The in-phase component of this signal is then plotted along with the X and Y position data, constructing the dI/dV image. We show that by incorporating notch filters in the STM feedback loop, we may utilize a high-amplitude dither voltage to significantly improve the quality of the obtained dI/dV image.