{"title":"Streaming Local Community Detection Through Approximate Conductance","authors":"Meng Wang;Yanhao Yang;David Bindel;Kun He","doi":"10.1109/TBDATA.2023.3310251","DOIUrl":null,"url":null,"abstract":"Community is a universal structure in various complex networks, and community detection is a fundamental task for network analysis. With the rapid growth of network scale, networks are massive, changing rapidly, and could naturally be modeled as graph streams. Due to the limited memory and access constraint in graph streams, existing non-streaming community detection methods are no longer applicable. This raises an emerging need for online approaches. In this work, we consider the problem of uncovering the local community containing a few query nodes in graph streams, termed streaming local community detection. This new problem raised recently is more challenging for community detection, and only a few works address this online setting. Correspondingly, we design an online single-pass streaming local community detection approach. Inspired by the local property of communities, our method samples the local structure around the query nodes in graph streams and extracts the target community on the sampled subgraph using our proposed metric called approximate conductance. Comprehensive experiments show that our method remarkably outperforms the streaming baseline on both effectiveness and efficiency, and even achieves similar accuracy compared to the state-of-the-art non-streaming local community detection methods that use static and complete graphs.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 1","pages":"12-22"},"PeriodicalIF":7.5000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10236968/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Community is a universal structure in various complex networks, and community detection is a fundamental task for network analysis. With the rapid growth of network scale, networks are massive, changing rapidly, and could naturally be modeled as graph streams. Due to the limited memory and access constraint in graph streams, existing non-streaming community detection methods are no longer applicable. This raises an emerging need for online approaches. In this work, we consider the problem of uncovering the local community containing a few query nodes in graph streams, termed streaming local community detection. This new problem raised recently is more challenging for community detection, and only a few works address this online setting. Correspondingly, we design an online single-pass streaming local community detection approach. Inspired by the local property of communities, our method samples the local structure around the query nodes in graph streams and extracts the target community on the sampled subgraph using our proposed metric called approximate conductance. Comprehensive experiments show that our method remarkably outperforms the streaming baseline on both effectiveness and efficiency, and even achieves similar accuracy compared to the state-of-the-art non-streaming local community detection methods that use static and complete graphs.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.