Casper A Goverde, Martin Pacesa, Nicolas Goldbach, Lars J Dornfeld, Petra E M Balbi, Sandrine Georgeon, Stéphane Rosset, Srajan Kapoor, Jagrity Choudhury, Justas Dauparas, Christian Schellhaas, Simon Kozlov, David Baker, Sergey Ovchinnikov, Alex J Vecchio, Bruno E Correia
{"title":"Computational design of soluble functional analogues of integral membrane proteins.","authors":"Casper A Goverde, Martin Pacesa, Nicolas Goldbach, Lars J Dornfeld, Petra E M Balbi, Sandrine Georgeon, Stéphane Rosset, Srajan Kapoor, Jagrity Choudhury, Justas Dauparas, Christian Schellhaas, Simon Kozlov, David Baker, Sergey Ovchinnikov, Alex J Vecchio, Bruno E Correia","doi":"10.1101/2023.05.09.540044","DOIUrl":null,"url":null,"abstract":"<p><p><i>De novo</i> design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a <i>de facto</i> expansion of the functional soluble fold space.</p>","PeriodicalId":53444,"journal":{"name":"Voprosy Detskoi Dietologii","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942269/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Voprosy Detskoi Dietologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.05.09.540044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
De novo design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
期刊介绍:
The scientific journal Voprosy Detskoi Dietologii is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Food Science, Pediatrics, Perinatology, and Child Health, Nutrition and Dietetics, Клиническая медицина.