Powering the Future: Hydrogel-based Soft Ionic Conductors Energize Flexible and Wearable Triboelectric Nanogenerators

Yang Luo
{"title":"Powering the Future: Hydrogel-based Soft Ionic Conductors Energize Flexible and Wearable Triboelectric Nanogenerators","authors":"Yang Luo","doi":"10.30564/opmr.v5i1.5818","DOIUrl":null,"url":null,"abstract":"In contemporary times, the escalating prominence of portable and wearable electronics of the next generation has instigated a surge in the need for power solutions [1]. However, conventional power supplies, characterized by their rigid and intricate configurations, substantial size, and ecologically detrimental characteristics, no longer meet the essential prerequisites of wearable electronics. Consequently, researchers have devoted significant efforts towards the advancement of pliable and environmentally sustainable power sources specifically tailored for wearable applications. In recent years, one particular avenue of exploration that has garnered attention is flexible triboelectric nanogenerators (TENGs).","PeriodicalId":19583,"journal":{"name":"Organic Polymer Material Research","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Polymer Material Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/opmr.v5i1.5818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In contemporary times, the escalating prominence of portable and wearable electronics of the next generation has instigated a surge in the need for power solutions [1]. However, conventional power supplies, characterized by their rigid and intricate configurations, substantial size, and ecologically detrimental characteristics, no longer meet the essential prerequisites of wearable electronics. Consequently, researchers have devoted significant efforts towards the advancement of pliable and environmentally sustainable power sources specifically tailored for wearable applications. In recent years, one particular avenue of exploration that has garnered attention is flexible triboelectric nanogenerators (TENGs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为未来提供动力:基于水凝胶的软离子导体为柔性可穿戴摩擦纳米发电机供电
在当代,下一代便携式和可穿戴电子产品的日益突出已经激起了对电源解决方案需求的激增[1]。然而,传统电源的特点是其刚性和复杂的结构,庞大的尺寸,和生态有害的特性,不再满足可穿戴电子产品的基本先决条件。因此,研究人员为开发专为可穿戴应用量身定制的柔韧且环境可持续的电源付出了巨大的努力。近年来,一种特别的探索途径引起了人们的注意,那就是柔性摩擦电纳米发电机(TENGs)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis and Characterization of Benzobisoxazole-based Conjugated Polymers for Organic Photodetectors Cyclopentadithiophene-based Conjugated Polymers for Organic Thermoelectric Devices and Other Applications Studies on Dispersion of Insoluble Sulfur in Passenger Car Radial Belt Skim Compound Powering the Future: Hydrogel-based Soft Ionic Conductors Energize Flexible and Wearable Triboelectric Nanogenerators Development of a Test Method for the Estimation of SBR-BR Blend Ratio in Tyre Tread Formulation and Validating It through Robust Statistical Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1