Hierarchical Persian Text Categorization in Absence of Labeled Data

S. Masoudian, V. Derhami, S. Zarifzadeh
{"title":"Hierarchical Persian Text Categorization in Absence of Labeled Data","authors":"S. Masoudian, V. Derhami, S. Zarifzadeh","doi":"10.1109/IranianCEE.2019.8786690","DOIUrl":null,"url":null,"abstract":"Hierarchical text categorization is used in many real-world applications, such as webpage topic classification and product categorization. Large quantities of labeled training data are needed to build an accurate hierarchical classification model. However, labeled samples are difficult and very time-consuming to obtain. On the other hand, due to the expansion of the Internet, plenty of unlabeled documents are available. In this paper, we propose a top-down method to hierarchically categorize partially labeled documents (having labeled documents only at first few levels of the hierarchy) using “local classifier per parent node” approach. We utilize a classification algorithm for the parent nodes with training data available. We use a labeling strategy for other parent nodes that do not have labeled data to be able to train a classifier. In our knowledge, this is the first study on hierarchical Persian text categorization, and our experiments show that the proposed approach achieves an acceptable performance.","PeriodicalId":6683,"journal":{"name":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","volume":"53 1","pages":"1951-1955"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IranianCEE.2019.8786690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hierarchical text categorization is used in many real-world applications, such as webpage topic classification and product categorization. Large quantities of labeled training data are needed to build an accurate hierarchical classification model. However, labeled samples are difficult and very time-consuming to obtain. On the other hand, due to the expansion of the Internet, plenty of unlabeled documents are available. In this paper, we propose a top-down method to hierarchically categorize partially labeled documents (having labeled documents only at first few levels of the hierarchy) using “local classifier per parent node” approach. We utilize a classification algorithm for the parent nodes with training data available. We use a labeling strategy for other parent nodes that do not have labeled data to be able to train a classifier. In our knowledge, this is the first study on hierarchical Persian text categorization, and our experiments show that the proposed approach achieves an acceptable performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
没有标记数据的分层波斯语文本分类
层次文本分类在许多实际应用中使用,例如网页主题分类和产品分类。为了建立准确的分层分类模型,需要大量带标签的训练数据。然而,标记样品是困难和非常耗时获得。另一方面,由于Internet的扩展,大量未标记的文档可用。在本文中,我们提出了一种自顶向下的方法,使用“每个父节点的本地分类器”方法对部分标记文档(仅在层次结构的前几个级别标记文档)进行分层分类。我们对具有训练数据的父节点使用分类算法。我们对其他没有标记数据的父节点使用标记策略来训练分类器。据我们所知,这是第一次对分层波斯语文本分类进行研究,我们的实验表明,所提出的方法达到了可接受的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Graphene Nanoribbon based Resonant Tunneling Diodes using BN Quantum Well A Modified McEliece Public-Key Cryptosystem Based On Irregular Codes Of QC-LDPC and QC-MDPC A 6-bit 100-MS/s Fully-Digital Time-Based Analog-to-Digital Converter Direct Torque and Flux Control of Dual Stator Winding Induction Motor Drives based on Emotional Controller Measurement Time Reduction in Compliance Assessment of Electromagnetic Field Levels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1