Guibao Cao, Shuangling Wang, B. Wei, Yilong Yin, Gongping Yang
{"title":"A Hybrid Cnn-Rf Method for Electron Microscopy Images Segmentation","authors":"Guibao Cao, Shuangling Wang, B. Wei, Yilong Yin, Gongping Yang","doi":"10.4172/1662-100X.1000114","DOIUrl":null,"url":null,"abstract":"To get new insights into the function and structure of the brain,neuroanatomists need to build 3D reconstructions of brain tissue from electron microscopy (EM) images. One key step towards this is to get automatic segmentation of neuronal structures depicted in stacks of electron microscopy images. However, due to the visual complex appearance of neuronal structures, it is challenging to automatically segment membranes in the EM images. Based on Convolutional Neural Network (CNN) and Random Forest classifier (RF), a hybrid CNN-RF method for EM neuron segmentation is presented. CNN as a feature extractor is trained firstly, and then well behaved features are learned with the trained feature extractor automatically. Finally, Random Forest classifier is trained on the learned features to perform neuron segmentation. Experiments have been conducted on the benchmarks for the ISBI2012 EM Segmentation Challenge, and the proposed method achieves the effectiveness results: The Rand error, Warping error and Pixel error attains to 0.109388991, 0.001455688 and 0.072129307, respectively.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/1662-100X.1000114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
To get new insights into the function and structure of the brain,neuroanatomists need to build 3D reconstructions of brain tissue from electron microscopy (EM) images. One key step towards this is to get automatic segmentation of neuronal structures depicted in stacks of electron microscopy images. However, due to the visual complex appearance of neuronal structures, it is challenging to automatically segment membranes in the EM images. Based on Convolutional Neural Network (CNN) and Random Forest classifier (RF), a hybrid CNN-RF method for EM neuron segmentation is presented. CNN as a feature extractor is trained firstly, and then well behaved features are learned with the trained feature extractor automatically. Finally, Random Forest classifier is trained on the learned features to perform neuron segmentation. Experiments have been conducted on the benchmarks for the ISBI2012 EM Segmentation Challenge, and the proposed method achieves the effectiveness results: The Rand error, Warping error and Pixel error attains to 0.109388991, 0.001455688 and 0.072129307, respectively.