Optimization of process factors using the Taguchi method of DOE towards the hydrodeoxygenation of acetic acid

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY Ovidius University Annals of Chemistry Pub Date : 2020-01-01 DOI:10.2478/auoc-2020-0008
A. Mashi, M. Rahama
{"title":"Optimization of process factors using the Taguchi method of DOE towards the hydrodeoxygenation of acetic acid","authors":"A. Mashi, M. Rahama","doi":"10.2478/auoc-2020-0008","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports the optimization of process factors using the Taguchi method towards the conversion of acetic acid and ethanol yield during the hydrogenation of acetic acid over 4% Pt/TiO2. The acidity of 4% Pt/TiO2 was characterized using NH3-Temperature Programmed Desorption analysis (NH3-TPD). Afterwards, the effect of temperature on the hydrogenation of acetic acid as an individual feed was investigated. The reaction space explored in the following ranges: temperature 80-200 °C, pressure 10-40 bar, time 1-4 h, catalyst 0.1-0.4 g and stirring speed 400-1000 min−1 using 4% Pt/TiO2, was investigated for the optimization study, while the effect of temperature was studied in a temperature range of 145 to 200 °C. NH3-TPD analysis reveals that moderate acidity was suitable for the hydrogenation of acetic acid to ethanol. It was also found that 200 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 for acetic acid conversion, and 160 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 were the optimum conditions for ethanol production. In addition, the selectivity of ethanol was favored at lower temperatures which decreases with increasing temperature.","PeriodicalId":19641,"journal":{"name":"Ovidius University Annals of Chemistry","volume":"90 1","pages":"38 - 43"},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ovidius University Annals of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/auoc-2020-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper reports the optimization of process factors using the Taguchi method towards the conversion of acetic acid and ethanol yield during the hydrogenation of acetic acid over 4% Pt/TiO2. The acidity of 4% Pt/TiO2 was characterized using NH3-Temperature Programmed Desorption analysis (NH3-TPD). Afterwards, the effect of temperature on the hydrogenation of acetic acid as an individual feed was investigated. The reaction space explored in the following ranges: temperature 80-200 °C, pressure 10-40 bar, time 1-4 h, catalyst 0.1-0.4 g and stirring speed 400-1000 min−1 using 4% Pt/TiO2, was investigated for the optimization study, while the effect of temperature was studied in a temperature range of 145 to 200 °C. NH3-TPD analysis reveals that moderate acidity was suitable for the hydrogenation of acetic acid to ethanol. It was also found that 200 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 for acetic acid conversion, and 160 °C, 40 bar, 4 h, 0.4 g and 1000 min−1 were the optimum conditions for ethanol production. In addition, the selectivity of ethanol was favored at lower temperatures which decreases with increasing temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用DOE法对乙酸加氢脱氧工艺因素进行优化
摘要/ Abstract摘要:本文报道了采用田口法对4% Pt/TiO2加氢过程中乙酸转化率和乙醇产率的工艺因素进行优化。采用nh3 -温度程序解吸法(NH3-TPD)表征了4% Pt/TiO2的酸度。在此基础上,研究了温度对醋酸加氢的影响。以4% Pt/TiO2为原料,在温度80 ~ 200℃,压力10 ~ 40 bar,时间1 ~ 4 h,催化剂0.1 ~ 0.4 g,搅拌速度400 ~ 1000 min−1的条件下对反应空间进行了优化研究,并在145 ~ 200℃的温度范围内对温度的影响进行了研究。NH3-TPD分析表明,酸度适宜于醋酸加氢制乙醇。乙酸转化的最佳条件为200℃、40 bar、4 h、0.4 g和1000 min−1;乙醇生产的最佳条件为160℃、40 bar、4 h、0.4 g和1000 min−1。此外,乙醇的选择性在较低温度下更有利,但随温度的升高而降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ovidius University Annals of Chemistry
Ovidius University Annals of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
自引率
11.10%
发文量
20
审稿时长
5 weeks
期刊最新文献
End-of-life mobile phones parts contain toxic metals that make them hazardous, but can also serve as resource reserves for such metals Rheology of new lubricating greases made from renewable materials Solubility of acetaminophen in the ethanol and glycerol mixtures at different temperatures Eco-friendly and efficient monitoring of physico-chemical parameters of some mineral water from Slanic Moldova (Romania) during storage in different conditions – a case study GC-MS profile and antimicrobial activities of extracts from root of Senna occidentalis Linn.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1