Estimating model parameters and boundaries by minimizing a joint, robust objective function

C. Stewart, Kishore Bubna, A. Perera
{"title":"Estimating model parameters and boundaries by minimizing a joint, robust objective function","authors":"C. Stewart, Kishore Bubna, A. Perera","doi":"10.1109/CVPR.1999.784710","DOIUrl":null,"url":null,"abstract":"Many problems in computer vision require estimation of both model parameters and boundaries, which limits the usefulness of standard estimation techniques from statistics. Example problems include surface reconstruction from range data, estimation of parametric motion models, fitting circular or elliptic arcs to edgel data, and many others. This paper introduces a new estimation technique, called the \"Domain Bounding M-Estimator\", which is a generalization of ordinary M-estimators combining error measures on model parameters and boundaries in a joint, robust objective function. Minimization of the objective function given a rough initialization yields simultaneous estimates of parameters and boundaries. The DBM-Estimator has been applied to estimating line segments, surfaces, and the symmetry transformation between two edgel chains. It is unaffected by outliers and prevents boundary estimates from crossing even small magnitude discontinuities.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"6 1","pages":"387-393 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Many problems in computer vision require estimation of both model parameters and boundaries, which limits the usefulness of standard estimation techniques from statistics. Example problems include surface reconstruction from range data, estimation of parametric motion models, fitting circular or elliptic arcs to edgel data, and many others. This paper introduces a new estimation technique, called the "Domain Bounding M-Estimator", which is a generalization of ordinary M-estimators combining error measures on model parameters and boundaries in a joint, robust objective function. Minimization of the objective function given a rough initialization yields simultaneous estimates of parameters and boundaries. The DBM-Estimator has been applied to estimating line segments, surfaces, and the symmetry transformation between two edgel chains. It is unaffected by outliers and prevents boundary estimates from crossing even small magnitude discontinuities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过最小化联合鲁棒目标函数来估计模型参数和边界
计算机视觉中的许多问题都需要对模型参数和边界进行估计,这限制了从统计学角度进行标准估计技术的有效性。示例问题包括从距离数据重建表面,估计参数运动模型,拟合圆弧或椭圆弧到边缘数据,以及许多其他问题。本文介绍了一种新的估计技术,称为“域边界m估计器”,它是普通m估计器的推广,在联合鲁棒目标函数中结合模型参数和边界上的误差度量。给定一个粗略初始化的目标函数的最小化产生参数和边界的同时估计。dbm估计器已被应用于估计线段、曲面和两个边链之间的对称变换。它不受异常值的影响,并防止边界估计跨越甚至小幅度的不连续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1