Nicole Barritt, Mohana Kuppuswamy Parthasarathy, Ibrahim Faruq, J. Zelek, V. Lakshminarayanan
{"title":"Fundus camera versus smartphone camera attachment: image quality analysis","authors":"Nicole Barritt, Mohana Kuppuswamy Parthasarathy, Ibrahim Faruq, J. Zelek, V. Lakshminarayanan","doi":"10.1117/12.2528965","DOIUrl":null,"url":null,"abstract":"Fundus cameras are the current clinical standard for capturing retinal images, which are used to diagnose a variety of sight-threatening conditions. Traditional fundus cameras are not easily transported, making them unsuitable for field use. In addition, traditional fundus cameras are expensive. Due to this, a variety of technologies have been developed such as the D-EYE Digital Ophthalmoscope (D-EYE Srl, Padova, Italy) which is compatible with various cellphone cameras. This paper reports on the comparison of the image quality of the Nidek RS-330 OCT Retina Scan Duo (Nidek, Tokyo, Japan) and the D-EYE paired with an iPhone 6 (Apple, Cupertino, USA). Twenty-one participants were enrolled in the study of whom 14 underwent nonmydriatic and mydriatic imaging with the D-EYE and the Nidek. Seven participants underwent nonmydriatic imaging with the D-EYE and the Nidek. The images were co-registered and cropped so that the region of interest was equal in both the D-EYE and Nidek images, as the D-EYE had a smaller field of view. Using the Nidek image as the reference, objective full-reference image quality analysis was performed. Metrics such as structural similarity index and peak signal noise ratio were obtained. It was found that the image quality of the D-EYE is limited by the attached iPhone camera, and is lower when compared to the Nidek. Quantification of the differences between the D-EYE and Nidek allows for targeted development of smartphone camera attachments that can help to bridge the current gap in image quality.","PeriodicalId":10843,"journal":{"name":"Current Developments in Lens Design and Optical Engineering XX","volume":"41 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Developments in Lens Design and Optical Engineering XX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2528965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Fundus cameras are the current clinical standard for capturing retinal images, which are used to diagnose a variety of sight-threatening conditions. Traditional fundus cameras are not easily transported, making them unsuitable for field use. In addition, traditional fundus cameras are expensive. Due to this, a variety of technologies have been developed such as the D-EYE Digital Ophthalmoscope (D-EYE Srl, Padova, Italy) which is compatible with various cellphone cameras. This paper reports on the comparison of the image quality of the Nidek RS-330 OCT Retina Scan Duo (Nidek, Tokyo, Japan) and the D-EYE paired with an iPhone 6 (Apple, Cupertino, USA). Twenty-one participants were enrolled in the study of whom 14 underwent nonmydriatic and mydriatic imaging with the D-EYE and the Nidek. Seven participants underwent nonmydriatic imaging with the D-EYE and the Nidek. The images were co-registered and cropped so that the region of interest was equal in both the D-EYE and Nidek images, as the D-EYE had a smaller field of view. Using the Nidek image as the reference, objective full-reference image quality analysis was performed. Metrics such as structural similarity index and peak signal noise ratio were obtained. It was found that the image quality of the D-EYE is limited by the attached iPhone camera, and is lower when compared to the Nidek. Quantification of the differences between the D-EYE and Nidek allows for targeted development of smartphone camera attachments that can help to bridge the current gap in image quality.