下载PDF
{"title":"Design and simulation of a multilayer Halbach magnet for NMR","authors":"Qiaoyan Chen, Guangcai Zhang, Yajie Xu, Xiaodong Yang","doi":"10.1002/cmr.b.21292","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Halbach magnet is a type of permanent magnet generating a relatively high and homogeneous magnetic field. It is suitable for Nuclear Magnetic Resonance (NMR) studies of small volume chemical or biological samples. In this article, the model of a Halbach magnet made from an odd number of cylindrical layers is proposed for the first time. Then after the optimization of interlayer distances for odd layers Halbach cylinders, the model is verified by the simulation with a magnet inner radius of 30 mm and an outer radius of 49 mm. Moreover, the disturbance of uniformity in 5 mm DSV (Diameter of Spherical Volume) is presented with errors in magnetic strength and angular variation. As a result, a minimum uniformity of 46 ppm inside a 5 mm DSV is achieved, while it increases practically in the presence of magnetic blocks errors. The good performance of the Halbach magnet with odd layers may find potential applications in NMR. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 45B: 134–141, 2015</p>\n </div>","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"45 3","pages":"134-141"},"PeriodicalIF":0.9000,"publicationDate":"2015-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.b.21292","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 10
引用
批量引用
Abstract
Halbach magnet is a type of permanent magnet generating a relatively high and homogeneous magnetic field. It is suitable for Nuclear Magnetic Resonance (NMR) studies of small volume chemical or biological samples. In this article, the model of a Halbach magnet made from an odd number of cylindrical layers is proposed for the first time. Then after the optimization of interlayer distances for odd layers Halbach cylinders, the model is verified by the simulation with a magnet inner radius of 30 mm and an outer radius of 49 mm. Moreover, the disturbance of uniformity in 5 mm DSV (Diameter of Spherical Volume) is presented with errors in magnetic strength and angular variation. As a result, a minimum uniformity of 46 ppm inside a 5 mm DSV is achieved, while it increases practically in the presence of magnetic blocks errors. The good performance of the Halbach magnet with odd layers may find potential applications in NMR. © 2015 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 45B: 134–141, 2015
核磁共振用多层哈尔巴赫磁体的设计与仿真
哈尔巴赫磁铁是一种产生相对高且均匀磁场的永磁体。它适用于小体积化学或生物样品的核磁共振(NMR)研究。本文首次提出了由奇数圆柱层构成的哈尔巴赫磁体模型。然后对奇层Halbach圆柱进行层间距离优化后,以磁体内半径为30 mm、外半径为49 mm为条件进行仿真验证。此外,在5 mm的球面体积直径范围内,存在均匀性扰动,磁场强度和角度变化存在误差。因此,在5 mm DSV内实现了46 ppm的最小均匀性,而在存在磁块误差的情况下,均匀性实际上会增加。奇数层哈尔巴赫磁体的良好性能可能在核磁共振中有潜在的应用。©2015 Wiley期刊公司工程机械学报(自然科学版),2015,31 (4):554 - 557
本文章由计算机程序翻译,如有差异,请以英文原文为准。