{"title":"Optimization of RF sputtered PZT thin films for MEMS cantilever application","authors":"A. Joshi, S. Gangal, D. Bodas, J. Rauch","doi":"10.1109/ISPTS.2012.6260913","DOIUrl":null,"url":null,"abstract":"Optimization of RF sputtered piezoelectric PZT thin films for thickness and stoichiometry for use in MEMS application is discussed in this paper. The effect of sputtering parameters on PZT film stoichiometry is studied using EDS and XPS techniques. 600 nm thin PZT film with Zr:Ti ratio of 52∶48 is achieved in single sputtering cycle. The film is annealed using conventional furnace annealing technique and the effect of annealing process on phase formation is studied using XRD technique. The optimized PZT thin film shows sufficiently good stoichiometry. A piezoelectric coefficient (d33) value for PZT thin film deposited at optimum parameters is 450pm/V. Optimized PZT thin film parameters are used for successful fabrication of cantilever using silicon bulk micromachining.","PeriodicalId":6431,"journal":{"name":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 1st International Symposium on Physics and Technology of Sensors (ISPTS-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPTS.2012.6260913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Optimization of RF sputtered piezoelectric PZT thin films for thickness and stoichiometry for use in MEMS application is discussed in this paper. The effect of sputtering parameters on PZT film stoichiometry is studied using EDS and XPS techniques. 600 nm thin PZT film with Zr:Ti ratio of 52∶48 is achieved in single sputtering cycle. The film is annealed using conventional furnace annealing technique and the effect of annealing process on phase formation is studied using XRD technique. The optimized PZT thin film shows sufficiently good stoichiometry. A piezoelectric coefficient (d33) value for PZT thin film deposited at optimum parameters is 450pm/V. Optimized PZT thin film parameters are used for successful fabrication of cantilever using silicon bulk micromachining.