Robust Image Segmentation Using Contour-Guided Color Palettes

Xiang Fu, Chien-Yi Wang, Chen Chen, Changhu Wang, C.-C. Jay Kuo
{"title":"Robust Image Segmentation Using Contour-Guided Color Palettes","authors":"Xiang Fu, Chien-Yi Wang, Chen Chen, Changhu Wang, C.-C. Jay Kuo","doi":"10.1109/ICCV.2015.189","DOIUrl":null,"url":null,"abstract":"The contour-guided color palette (CCP) is proposed for robust image segmentation. It efficiently integrates contour and color cues of an image. To find representative colors of an image, color samples along long contours between regions, similar in spirit to machine learning methodology that focus on samples near decision boundaries, are collected followed by the mean-shift (MS) algorithm in the sampled color space to achieve an image-dependent color palette. This color palette provides a preliminary segmentation in the spatial domain, which is further fine-tuned by post-processing techniques such as leakage avoidance, fake boundary removal, and small region mergence. Segmentation performances of CCP and MS are compared and analyzed. While CCP offers an acceptable standalone segmentation result, it can be further integrated into the framework of layered spectral segmentation to produce a more robust segmentation. The superior performance of CCP-based segmentation algorithm is demonstrated by experiments on the Berkeley Segmentation Dataset.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"1 1","pages":"1618-1625"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The contour-guided color palette (CCP) is proposed for robust image segmentation. It efficiently integrates contour and color cues of an image. To find representative colors of an image, color samples along long contours between regions, similar in spirit to machine learning methodology that focus on samples near decision boundaries, are collected followed by the mean-shift (MS) algorithm in the sampled color space to achieve an image-dependent color palette. This color palette provides a preliminary segmentation in the spatial domain, which is further fine-tuned by post-processing techniques such as leakage avoidance, fake boundary removal, and small region mergence. Segmentation performances of CCP and MS are compared and analyzed. While CCP offers an acceptable standalone segmentation result, it can be further integrated into the framework of layered spectral segmentation to produce a more robust segmentation. The superior performance of CCP-based segmentation algorithm is demonstrated by experiments on the Berkeley Segmentation Dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用轮廓引导调色板的鲁棒图像分割
提出了轮廓引导调色板(CCP)的鲁棒图像分割方法。它有效地整合了图像的轮廓和颜色线索。为了找到图像的代表性颜色,沿着区域之间的长轮廓收集颜色样本,在精神上类似于专注于决策边界附近样本的机器学习方法,然后在采样颜色空间中使用mean-shift (MS)算法来实现依赖于图像的调色板。这个调色板在空间域中提供了一个初步的分割,通过后处理技术(如避免泄漏、假边界去除和小区域合并)进一步微调。对比分析了CCP和MS的分割性能。虽然CCP提供了一个可接受的独立分割结果,但它可以进一步集成到分层光谱分割框架中,以产生更鲁棒的分割。在Berkeley分割数据集上的实验证明了基于ccp的分割算法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1