Roselle T. Ngaloy, A. Fontanilla, Ma. S. Rebecca Soriano, C. Pascua, Y. Matsushita, I. Agulo
{"title":"Highly Efficient Photocatalysis by Zinc Oxide-Reduced Graphene Oxide (ZnO-rGO) Composite Synthesized via One-Pot Room-Temperature Chemical Deposition Method","authors":"Roselle T. Ngaloy, A. Fontanilla, Ma. S. Rebecca Soriano, C. Pascua, Y. Matsushita, I. Agulo","doi":"10.1155/2019/1895043","DOIUrl":null,"url":null,"abstract":"We synthesized zinc oxide-reduced graphene oxide (ZnO-rGO) composites using a one-pot chemical deposition method at room temperature. Zinc powder and graphene oxide (GO) of different mass ratios (1 : 1, 1 : 2, 1 : 5, 1 : 10, and 1 : 20 GO to Zn) were used as precursors in a mildly alkaline solution. UV-Vis spectroscopy was used to study the photocatalytic efficiency of the samples through the photodegradation of methylene blue (MB). UV-Vis measurements show the fast decomposition of methylene blue under UV light illumination with the best degradation efficiency of 97.7% within one hour, achieved with sample ZG2 (1 GO : 2 Zn mass ratio). The corresponding degradation rate was kZG2 = 0.1253 min−1, which is at least 5.5 times better than other existing works using hydrothermal methods. We argue that the excellent photodegradation of MB by ZG2 is due to the efficient charge separation brought about by the electronic interaction of the rGO with the ZnO and the formation of a Zn-O-C bond, as supported by XRD and Raman spectroscopy measurements.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":"3 1","pages":"1-11"},"PeriodicalIF":3.9000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/1895043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 11
Abstract
We synthesized zinc oxide-reduced graphene oxide (ZnO-rGO) composites using a one-pot chemical deposition method at room temperature. Zinc powder and graphene oxide (GO) of different mass ratios (1 : 1, 1 : 2, 1 : 5, 1 : 10, and 1 : 20 GO to Zn) were used as precursors in a mildly alkaline solution. UV-Vis spectroscopy was used to study the photocatalytic efficiency of the samples through the photodegradation of methylene blue (MB). UV-Vis measurements show the fast decomposition of methylene blue under UV light illumination with the best degradation efficiency of 97.7% within one hour, achieved with sample ZG2 (1 GO : 2 Zn mass ratio). The corresponding degradation rate was kZG2 = 0.1253 min−1, which is at least 5.5 times better than other existing works using hydrothermal methods. We argue that the excellent photodegradation of MB by ZG2 is due to the efficient charge separation brought about by the electronic interaction of the rGO with the ZnO and the formation of a Zn-O-C bond, as supported by XRD and Raman spectroscopy measurements.