Asad Ali, Ghulam Abbas, Khurram Shahzad Ayub, A. Imran, L. Ali, Muhammad Zaid
{"title":"Experimental Study on the Particle Flow and Validation of the Results Using TIS Model in a Continuously Operated Horizontal Fluidized Bed","authors":"Asad Ali, Ghulam Abbas, Khurram Shahzad Ayub, A. Imran, L. Ali, Muhammad Zaid","doi":"10.3390/engproc2021012080","DOIUrl":null,"url":null,"abstract":"The particle residence time in a gas–solid fluidized bed is of great interest. In this work, experiments have been carried out to investigate particle transportation, which is a matter of concern especially in pharmaceuticals, agriculture, food, and many other industries where time is the major concern, which effects the product quality. By varying the feed rate and baffle gap height in this research, the dispersion coefficient decreases significantly, which reduces the back-mixing and number of tanks as well. Moreover, the obtained results were validated with the tank in series (TIS) model.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The particle residence time in a gas–solid fluidized bed is of great interest. In this work, experiments have been carried out to investigate particle transportation, which is a matter of concern especially in pharmaceuticals, agriculture, food, and many other industries where time is the major concern, which effects the product quality. By varying the feed rate and baffle gap height in this research, the dispersion coefficient decreases significantly, which reduces the back-mixing and number of tanks as well. Moreover, the obtained results were validated with the tank in series (TIS) model.