Artificial Intelligence Based Domotics Using Multimodal Security

K. M. Uddin, Naimur Rahman, M. Rahman, Samrat Kumar Dey
{"title":"Artificial Intelligence Based Domotics Using Multimodal Security","authors":"K. M. Uddin, Naimur Rahman, M. Rahman, Samrat Kumar Dey","doi":"10.5815/ijisa.2023.03.04","DOIUrl":null,"url":null,"abstract":"All electronic devices in our cutting-edge technology world must be networked together via the Internet if users want to have remote access to them. As a result, it may raise a variety of serious security issues. This study suggests a remote access home automation security system that incorporates utilizing the Internet of Things (IoT), and Artificial Intelligence (AI) for ensuring the security of the house. For a highly efficient security system, Face recognition has been used to maneuver the door access. In case of power outage or for any technical issues, an alternative security PIN has been added which is only accessible by the owner. Moreover, individuals are able to monitor and control the door access along with other attributes of the house using an application. In this work, Face detection is performed using the Haar Cascade classifier, while face recognition is performed using the Local Binary Pattern Histogram (LBPH). 95.7% accuracy in recognizing faces has been achieved after evaluating the proposed system.","PeriodicalId":14067,"journal":{"name":"International Journal of Intelligent Systems and Applications in Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems and Applications in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijisa.2023.03.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

All electronic devices in our cutting-edge technology world must be networked together via the Internet if users want to have remote access to them. As a result, it may raise a variety of serious security issues. This study suggests a remote access home automation security system that incorporates utilizing the Internet of Things (IoT), and Artificial Intelligence (AI) for ensuring the security of the house. For a highly efficient security system, Face recognition has been used to maneuver the door access. In case of power outage or for any technical issues, an alternative security PIN has been added which is only accessible by the owner. Moreover, individuals are able to monitor and control the door access along with other attributes of the house using an application. In this work, Face detection is performed using the Haar Cascade classifier, while face recognition is performed using the Local Binary Pattern Histogram (LBPH). 95.7% accuracy in recognizing faces has been achieved after evaluating the proposed system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多模式安全的人工智能Domotics
如果用户想要远程访问,我们尖端科技世界的所有电子设备都必须通过互联网联网在一起。因此,它可能会引发各种严重的安全问题。该研究提出了利用物联网(IoT)和人工智能(AI)来确保家庭安全的远程访问家庭自动化安全系统。为了实现一个高效的安全系统,人脸识别已被用于控制门禁。在停电或任何技术问题的情况下,已经添加了一个替代的安全密码,只有主人可以访问。此外,个人可以使用应用程序监控和控制门禁以及房屋的其他属性。在这项工作中,使用Haar级联分类器进行人脸检测,而使用局部二值模式直方图(LBPH)进行人脸识别。经过评估,该系统的人脸识别准确率达到95.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Intelligent Systems and Applications in Engineering
International Journal of Intelligent Systems and Applications in Engineering Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
1.30
自引率
0.00%
发文量
18
期刊最新文献
Predicting Automobile Stock Prices Index in the Tehran Stock Exchange Using Machine Learning Models A Hybrid Unsupervised Density-based Approach with Mutual Information for Text Outlier Detection Digital Control and Management of Water Supply Infrastructure Using Embedded Systems and Machine Learning Machine Learning for Weather Forecasting: XGBoost vs SVM vs Random Forest in Predicting Temperature for Visakhapatnam An Enhanced Approach to Recommend Data Structures and Algorithms Problems Using Content-based Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1