Daniel Saranovic, M. Pavlovski, W. Power, Ivan Stojkovic, Z. Obradovic
{"title":"Interception of automated adversarial drone swarms in partially observed environments","authors":"Daniel Saranovic, M. Pavlovski, W. Power, Ivan Stojkovic, Z. Obradovic","doi":"10.3233/ICA-210653","DOIUrl":null,"url":null,"abstract":"As the prevalence of drones increases, understanding and preparing for possible adversarial uses of drones and drone swarms is of paramount importance. Correspondingly, developing defensive mechanisms in which swarms can be used to protect against adversarial Unmanned Aerial Vehicles (UAVs) is a problem that requires further attention. Prior work on intercepting UAVs relies mostly on utilizing additional sensors or uses the Hamilton-Jacobi-Bellman equation, for which strong conditions need to be met to guarantee the existence of a saddle-point solution. To that end, this work proposes a novel interception method that utilizes the swarm’s onboard PID controllers for setting the drones’ states during interception. The drone’s states are constrained only by their physical limitations, and only partial feedback of the adversarial drone’s positions is assumed. The new framework is evaluated in a virtual environment under different environmental and model settings, using random simulations of more than 165,000 swarm flights. For certain environmental settings, our results indicate that the interception performance of larger swarms under partial observation is comparable to that of a one-drone swarm under full observation of the adversarial drone.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"1 1","pages":"335-348"},"PeriodicalIF":5.8000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ICA-210653","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
As the prevalence of drones increases, understanding and preparing for possible adversarial uses of drones and drone swarms is of paramount importance. Correspondingly, developing defensive mechanisms in which swarms can be used to protect against adversarial Unmanned Aerial Vehicles (UAVs) is a problem that requires further attention. Prior work on intercepting UAVs relies mostly on utilizing additional sensors or uses the Hamilton-Jacobi-Bellman equation, for which strong conditions need to be met to guarantee the existence of a saddle-point solution. To that end, this work proposes a novel interception method that utilizes the swarm’s onboard PID controllers for setting the drones’ states during interception. The drone’s states are constrained only by their physical limitations, and only partial feedback of the adversarial drone’s positions is assumed. The new framework is evaluated in a virtual environment under different environmental and model settings, using random simulations of more than 165,000 swarm flights. For certain environmental settings, our results indicate that the interception performance of larger swarms under partial observation is comparable to that of a one-drone swarm under full observation of the adversarial drone.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.