Opening the Black Box: Hierarchical Sampling Optimization for Estimating Human Hand Pose

Danhang Tang, Jonathan Taylor, Pushmeet Kohli, Cem Keskin, Tae-Kyun Kim, J. Shotton
{"title":"Opening the Black Box: Hierarchical Sampling Optimization for Estimating Human Hand Pose","authors":"Danhang Tang, Jonathan Taylor, Pushmeet Kohli, Cem Keskin, Tae-Kyun Kim, J. Shotton","doi":"10.1109/ICCV.2015.380","DOIUrl":null,"url":null,"abstract":"We address the problem of hand pose estimation, formulated as an inverse problem. Typical approaches optimize an energy function over pose parameters using a 'black box' image generation procedure. This procedure knows little about either the relationships between the parameters or the form of the energy function. In this paper, we show that we can significantly improving upon black box optimization by exploiting high-level knowledge of the structure of the parameters and using a local surrogate energy function. Our new framework, hierarchical sampling optimization, consists of a sequence of predictors organized into a kinematic hierarchy. Each predictor is conditioned on its ancestors, and generates a set of samples over a subset of the pose parameters. The highly-efficient surrogate energy is used to select among samples. Having evaluated the full hierarchy, the partial pose samples are concatenated to generate a full-pose hypothesis. Several hypotheses are generated using the same procedure, and finally the original full energy function selects the best result. Experimental evaluation on three publically available datasets show that our method is particularly impressive in low-compute scenarios where it significantly outperforms all other state-of-the-art methods.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"11 1","pages":"3325-3333"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"144","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 144

Abstract

We address the problem of hand pose estimation, formulated as an inverse problem. Typical approaches optimize an energy function over pose parameters using a 'black box' image generation procedure. This procedure knows little about either the relationships between the parameters or the form of the energy function. In this paper, we show that we can significantly improving upon black box optimization by exploiting high-level knowledge of the structure of the parameters and using a local surrogate energy function. Our new framework, hierarchical sampling optimization, consists of a sequence of predictors organized into a kinematic hierarchy. Each predictor is conditioned on its ancestors, and generates a set of samples over a subset of the pose parameters. The highly-efficient surrogate energy is used to select among samples. Having evaluated the full hierarchy, the partial pose samples are concatenated to generate a full-pose hypothesis. Several hypotheses are generated using the same procedure, and finally the original full energy function selects the best result. Experimental evaluation on three publically available datasets show that our method is particularly impressive in low-compute scenarios where it significantly outperforms all other state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
打开黑箱:手部姿态估计的分层采样优化
我们解决的问题,手的姿态估计,公式化为一个逆问题。典型的方法是使用“黑盒”图像生成过程优化姿态参数上的能量函数。这个过程对参数之间的关系或能量函数的形式知之甚少。在本文中,我们证明了我们可以通过利用参数结构的高级知识和使用局部替代能量函数来显着改进黑盒优化。我们的新框架,分层抽样优化,由一系列的预测组织成一个运动层次结构。每个预测器都以其祖先为条件,并在姿态参数的子集上生成一组样本。利用高效的替代能量对样本进行选择。在评估了完整的层次结构之后,将部分姿态样本连接起来以生成一个完整姿态假设。采用相同的过程生成多个假设,最后由原全能量函数选择最佳结果。在三个公开可用的数据集上的实验评估表明,我们的方法在低计算场景中特别令人印象深刻,它明显优于所有其他最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1