Sophia Nawaz Gishkori, Ghulam Abbas, A. Shah, S. Rahman, M. S. Haider, Fahid Nisar
{"title":"Potential Bio-Fuel from Refinery Waste through Anaerobic Digestion","authors":"Sophia Nawaz Gishkori, Ghulam Abbas, A. Shah, S. Rahman, M. S. Haider, Fahid Nisar","doi":"10.3390/engproc2021012068","DOIUrl":null,"url":null,"abstract":"In this study we report biofuel potential in waste cake obtained from oil refinery. The sample was analyzed for its calorific value using auto bomb calorimeter (LECO AC-500), proximate analysis using Thermogravimetric analyzer (LECO 701) and elemental analysis using CHNS analyzer (LECO Tru-Spec). The elemental analysis of dry waste cake vs wet cake depicted the percentage composition of carbon (49.8%, 40.8%), hydrogen (7.9%, 6.0%), nitrogen (2.8%, 1.9%), Sulphur (1.9%, 0.5%) and oxygen content (37.6%, 40.4%). As for as the thermal degradation behavior of dry and wet cake in TGA is concerned, higher moisture contents (68.50%) found in wet cake and lower in dry cake (40.1%). Whereas the volatile matter in dry cake (30.9%) and low volatile in wet cake (14.3%). Similarly, %age of ash become high in dry cake (17.3%) and low in wet cake (5.11%). The results reflected that higher heating value of dry waste cake is higher (22.5 MJ/kg) than wet waste cake (20.5 MJ/kg) and commonly used sugarcane bagasse (17.88 MJ/kg).","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study we report biofuel potential in waste cake obtained from oil refinery. The sample was analyzed for its calorific value using auto bomb calorimeter (LECO AC-500), proximate analysis using Thermogravimetric analyzer (LECO 701) and elemental analysis using CHNS analyzer (LECO Tru-Spec). The elemental analysis of dry waste cake vs wet cake depicted the percentage composition of carbon (49.8%, 40.8%), hydrogen (7.9%, 6.0%), nitrogen (2.8%, 1.9%), Sulphur (1.9%, 0.5%) and oxygen content (37.6%, 40.4%). As for as the thermal degradation behavior of dry and wet cake in TGA is concerned, higher moisture contents (68.50%) found in wet cake and lower in dry cake (40.1%). Whereas the volatile matter in dry cake (30.9%) and low volatile in wet cake (14.3%). Similarly, %age of ash become high in dry cake (17.3%) and low in wet cake (5.11%). The results reflected that higher heating value of dry waste cake is higher (22.5 MJ/kg) than wet waste cake (20.5 MJ/kg) and commonly used sugarcane bagasse (17.88 MJ/kg).