Chipless RFID Tag Discrimination and the Performance of Resemblance Metrics to be used for it

Z. Ali, N. Barbot, R. Siragusa, D. Hély, M. Bernier, F. Garet, E. Perret
{"title":"Chipless RFID Tag Discrimination and the Performance of Resemblance Metrics to be used for it","authors":"Z. Ali, N. Barbot, R. Siragusa, D. Hély, M. Bernier, F. Garet, E. Perret","doi":"10.1109/MWSYM.2018.8439855","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel radar based approach for chipless tag discrimination. The proposed technique can be considered as a first step towards chipless authentication of manufactured products. The concept of chipless radiofrequency identification (RFID) is extended to tag discrimination, where each tag produces a unique signature that is very difficult to reproduce even if a clone of the device is made. The proposed technique, using radiofrequency (RF) electromagnetic (EM), keeps non-invasive and non-destructive. This new method to discriminate tag's RF signature is introduced based on the comparison between two resemblance metrics in the frequency domain and time domain. To calculate the resemblance between different signatures entire part of the RF signatures is exploited to utilize the maximum signals' richness. Owing to the chipless RF approach, we show that geometrical variations less than $\\pmb{10\\ \\mu \\mathrm{m}}$ (i.e., smaller than $\\lambda/1000$) can be detected which demonstrate the extreme sensitivity of the method.","PeriodicalId":6675,"journal":{"name":"2018 IEEE/MTT-S International Microwave Symposium - IMS","volume":"12 1","pages":"363-366"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/MTT-S International Microwave Symposium - IMS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2018.8439855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a novel radar based approach for chipless tag discrimination. The proposed technique can be considered as a first step towards chipless authentication of manufactured products. The concept of chipless radiofrequency identification (RFID) is extended to tag discrimination, where each tag produces a unique signature that is very difficult to reproduce even if a clone of the device is made. The proposed technique, using radiofrequency (RF) electromagnetic (EM), keeps non-invasive and non-destructive. This new method to discriminate tag's RF signature is introduced based on the comparison between two resemblance metrics in the frequency domain and time domain. To calculate the resemblance between different signatures entire part of the RF signatures is exploited to utilize the maximum signals' richness. Owing to the chipless RF approach, we show that geometrical variations less than $\pmb{10\ \mu \mathrm{m}}$ (i.e., smaller than $\lambda/1000$) can be detected which demonstrate the extreme sensitivity of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无芯片RFID标签的识别及相似度度量的性能
提出了一种基于雷达的无芯片标签识别方法。提出的技术可以被认为是制造产品无芯片认证的第一步。无芯片射频识别(RFID)的概念扩展到标签识别,其中每个标签产生一个独特的签名,即使是克隆设备也很难复制。所提出的技术,使用射频(RF)电磁(EM),保持非侵入性和非破坏性。介绍了一种基于频域和时域两种相似度度量的标签射频特征判别方法。为了计算不同签名之间的相似性,利用射频签名的整个部分来利用最大的信号丰富度。由于无芯片射频方法,我们表明可以检测到小于$\pmb{10\ \mu \mathrm{m}}$(即小于$\lambda/1000$)的几何变化,这证明了该方法的极端灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Throat Vibration Sensing with a Flexible 160-GHz Radar through Harmonic Generation A Terahertz Microscopy Technique for Sweat Duct Detection Slab Air-Filled Substrate Integrated Waveguide A Multi-Frequency MEMS-Based RF Oscillator Covering the Range from 11.7 MHz to 1.9 GHz Multiband Microwave Sensing for Surface Roughness Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1