{"title":"Stochastic Approximation of Symmetric Nash Equilibria in Queueing Games","authors":"L. Ravner, Ran I. Snitkovsky","doi":"10.1287/opre.2021.0306","DOIUrl":null,"url":null,"abstract":"The common setting of a queueing-game model consists of a stochastic stream of customers arriving at a queueing system one by one, each customer strategically chooses an action that may depend on information they receive regarding the system state. The aggregate customer decision profile gives rise to a system steady state, and, provided customers arrive at said steady state, if their decision is utility maximizing (ex ante), then this aggregate decision profile constitutes a Nash equilibrium. However, expressing the steady-state distribution for a given decision profile is very often a difficult task, and in such a case, an attempt to find a Nash equilibrium via direct analysis is futile. In the article “Stochastic Approximation of Symmetric Nash Equilibria in Queueing Games,” Ravner and Snitkovsky suggest a novel stochastic algorithm that learns the Nash equilibrium in a class of queueing games, based on a single adaptive simulation. The method is robust and is easy to implement, offering a practical solution to queueing-game models that classical queueing-analytic methods prove inadequate.","PeriodicalId":49809,"journal":{"name":"Military Operations Research","volume":"7 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Military Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2021.0306","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
The common setting of a queueing-game model consists of a stochastic stream of customers arriving at a queueing system one by one, each customer strategically chooses an action that may depend on information they receive regarding the system state. The aggregate customer decision profile gives rise to a system steady state, and, provided customers arrive at said steady state, if their decision is utility maximizing (ex ante), then this aggregate decision profile constitutes a Nash equilibrium. However, expressing the steady-state distribution for a given decision profile is very often a difficult task, and in such a case, an attempt to find a Nash equilibrium via direct analysis is futile. In the article “Stochastic Approximation of Symmetric Nash Equilibria in Queueing Games,” Ravner and Snitkovsky suggest a novel stochastic algorithm that learns the Nash equilibrium in a class of queueing games, based on a single adaptive simulation. The method is robust and is easy to implement, offering a practical solution to queueing-game models that classical queueing-analytic methods prove inadequate.
期刊介绍:
Military Operations Research is a peer-reviewed journal of high academic quality. The Journal publishes articles that describe operations research (OR) methodologies and theories used in key military and national security applications. Of particular interest are papers that present: Case studies showing innovative OR applications Apply OR to major policy issues Introduce interesting new problems areas Highlight education issues Document the history of military and national security OR.