Mechanical Properties of Hybrid Composites on Epoxy Resin with Sisal Fiber, Carbon Fiber and Silicon Carbide

P. Gurusamy, S. Sundeep, S. Karthick, J. Manibaskar, C. A. Karthick, V. Nishant
{"title":"Mechanical Properties of Hybrid Composites on Epoxy Resin with Sisal Fiber, Carbon Fiber and Silicon Carbide","authors":"P. Gurusamy, S. Sundeep, S. Karthick, J. Manibaskar, C. A. Karthick, V. Nishant","doi":"10.4273/ijvss.15.2.14","DOIUrl":null,"url":null,"abstract":"Composite materials offer huge upgrades over current accessible materials for various primary applications because of their fantastic mechanical qualities and moderately low thickness. Carbon filaments are most broadly utilized in vehicle, aviation, military and transportation of oil, gas and water applications. The specimen is prepared with varying stacking sequences (i.e., Carbon-Sisal- Carbon-Sisal [CSCS], Carbon-Sisal-Sisal-Carbon [CSSC] and Sisal-Carbon-Carbon- Sisal [SCCS]) and Carbon, Carbon, Carbon, Carbon (CCCC) and four carbon weight fraction (i.e., 2%, 4%, 6% and 8 %) with 2% of SiC. At the point when composites are used in water, oil and gas transportation, the lines are encountering high disintegration and burden. To learn about the impact of disintegration and burden, the malleable, flexural, influence, twofold shear and wear test are completed to comprehend the disintegration and conveying attributes of industrial applications. In this undertaking, the mechanical properties of composites on epoxy resin with sisal and carbon fiber have been considered. The result shows that the mechanical properties of carbon based samples shows that the better result as compared with other samples.","PeriodicalId":14391,"journal":{"name":"International Journal of Vehicle Structures and Systems","volume":"894 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Structures and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4273/ijvss.15.2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Composite materials offer huge upgrades over current accessible materials for various primary applications because of their fantastic mechanical qualities and moderately low thickness. Carbon filaments are most broadly utilized in vehicle, aviation, military and transportation of oil, gas and water applications. The specimen is prepared with varying stacking sequences (i.e., Carbon-Sisal- Carbon-Sisal [CSCS], Carbon-Sisal-Sisal-Carbon [CSSC] and Sisal-Carbon-Carbon- Sisal [SCCS]) and Carbon, Carbon, Carbon, Carbon (CCCC) and four carbon weight fraction (i.e., 2%, 4%, 6% and 8 %) with 2% of SiC. At the point when composites are used in water, oil and gas transportation, the lines are encountering high disintegration and burden. To learn about the impact of disintegration and burden, the malleable, flexural, influence, twofold shear and wear test are completed to comprehend the disintegration and conveying attributes of industrial applications. In this undertaking, the mechanical properties of composites on epoxy resin with sisal and carbon fiber have been considered. The result shows that the mechanical properties of carbon based samples shows that the better result as compared with other samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环氧树脂与剑麻纤维、碳纤维和碳化硅混杂复合材料的力学性能
复合材料由于其优异的机械质量和适度的低厚度,为各种主要应用提供了比目前可获得的材料巨大的升级。碳丝最广泛地应用于汽车、航空、军事和石油、天然气和水的运输。样品采用不同的堆叠顺序(碳-剑麻-碳-剑麻[CSCS]、碳-剑麻-剑麻-碳[CSSC]和剑麻-碳-碳-剑麻[SCCS])和碳、碳、碳、碳(CCCC)四种碳重分数(即2%、4%、6%和8%)制备,其中SiC含量为2%。当复合材料在水、石油和天然气运输中使用时,管道会遇到高崩解和负担。为了了解崩解和负荷的影响,完成了可锻、弯曲、影响、双重剪切和磨损试验,以了解工业应用的崩解和输送属性。本文研究了环氧树脂与剑麻、碳纤维复合材料的力学性能。结果表明,碳基样品的力学性能优于其他样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Vehicle Structures and Systems
International Journal of Vehicle Structures and Systems Engineering-Mechanical Engineering
CiteScore
0.90
自引率
0.00%
发文量
78
期刊介绍: The International Journal of Vehicle Structures and Systems (IJVSS) is a quarterly journal and is published by MechAero Foundation for Technical Research and Education Excellence (MAFTREE), based in Chennai, India. MAFTREE is engaged in promoting the advancement of technical research and education in the field of mechanical, aerospace, automotive and its related branches of engineering, science, and technology. IJVSS disseminates high quality original research and review papers, case studies, technical notes and book reviews. All published papers in this journal will have undergone rigorous peer review. IJVSS was founded in 2009. IJVSS is available in Print (ISSN 0975-3060) and Online (ISSN 0975-3540) versions. The prime focus of the IJVSS is given to the subjects of modelling, analysis, design, simulation, optimization and testing of structures and systems of the following: 1. Automotive vehicle including scooter, auto, car, motor sport and racing vehicles, 2. Truck, trailer and heavy vehicles for road transport, 3. Rail, bus, tram, emerging transit and hybrid vehicle, 4. Terrain vehicle, armoured vehicle, construction vehicle and Unmanned Ground Vehicle, 5. Aircraft, launch vehicle, missile, airship, spacecraft, space exploration vehicle, 6. Unmanned Aerial Vehicle, Micro Aerial Vehicle, 7. Marine vehicle, ship and yachts and under water vehicles.
期刊最新文献
Tribological Behavior of Physical Vapor Deposition Coating for Punch and Dies: An Overview Assembly Sequence and Assembly Path Planning of Robot Automation Products Based on Discrete Particle Swarm Optimization Effects of Al2O3 Concentration in Ethylene Glycol on Convection Heat Transfer Coefficient A Review of Wheel-Rail Contact Mechanics for Railway Vehicles Identification Method of Vehicle Key Performance Parameters based on PSO Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1