{"title":"Shaped coil-core design for inductive energy collectors","authors":"M. Kiziroglou, S. Wright, E. Yeatman","doi":"10.1109/PowerMEMS49317.2019.71805307777","DOIUrl":null,"url":null,"abstract":"Coil design is important for maximizing power density in inductive energy harvesting as well as in inductive power transfer. In this work, we present a study of coil performance, based on simulated flux distributions corresponding to a real aircraft application case. The use of funnel-shaped soft magnetic cores boosts magnetic flux density by flux concentration and allows the use of a smaller diameter coil. This reduces the transducer mass as well as the coil resistance $(R_{COIL})$, thereby increasing the power density. Analysis and simulation shows a fifty-fold power density increase from moderate funneling and another two-fold increase by coil size optimization. Results are compared with experimental measurements presented in [1] which demonstrate a $\\mu \\mathrm{W} / \\mathrm{g}\\left(106 \\mu \\mathrm{W} / \\mathrm{cm}^{3}\\right)$ power density from alternating environmental magnetic fields in the $10 \\mu \\mathrm{T} /300$ Hz range.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"67 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.71805307777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Coil design is important for maximizing power density in inductive energy harvesting as well as in inductive power transfer. In this work, we present a study of coil performance, based on simulated flux distributions corresponding to a real aircraft application case. The use of funnel-shaped soft magnetic cores boosts magnetic flux density by flux concentration and allows the use of a smaller diameter coil. This reduces the transducer mass as well as the coil resistance $(R_{COIL})$, thereby increasing the power density. Analysis and simulation shows a fifty-fold power density increase from moderate funneling and another two-fold increase by coil size optimization. Results are compared with experimental measurements presented in [1] which demonstrate a $\mu \mathrm{W} / \mathrm{g}\left(106 \mu \mathrm{W} / \mathrm{cm}^{3}\right)$ power density from alternating environmental magnetic fields in the $10 \mu \mathrm{T} /300$ Hz range.