Fast-Track Qualitative Interpretation of Seismic Data in a Permanent Reservoir Monitoring PRM Setting for a Brazilian Field

M. Maleki, S. Danaei, A. Davolio, D. Schiozer
{"title":"Fast-Track Qualitative Interpretation of Seismic Data in a Permanent Reservoir Monitoring PRM Setting for a Brazilian Field","authors":"M. Maleki, S. Danaei, A. Davolio, D. Schiozer","doi":"10.2118/196185-ms","DOIUrl":null,"url":null,"abstract":"Permanent Reservoir Monitoring (PRM) in systems deep-water settings provide on-demand snapshots for hydrocarbon reservoirs at different times during their production history. Delays in the interpretation turn-around of 4D seismic data reduce some benefits of the PRM. These delays could adversely impact the decision making processes despite obtaining information on demand. Using fast-track approaches in 4D seismic interpretation can provide timely information for reservoir management. This work focuses on a fast-track 4D seismic qualitative interpretation in PRM environment, with the aim of choosing the best seismic amplitude attribute (4D) to use. Different seismic attributes are extracted and the one with high signal-to-noise ratio is selected to carry out the 4D qualitative interpretation. All 4D signals are juxtaposed with well production history data to increase confidence in our interpretation. The selected attribute can be interpreted and used for the foreseeable life of field. This workflow has been developed and applied on post-salt Brazilian offshore field to choose the best seismic attribute to conduct the 4D seismic qualitative interpretation.","PeriodicalId":10909,"journal":{"name":"Day 2 Tue, October 01, 2019","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 01, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196185-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Permanent Reservoir Monitoring (PRM) in systems deep-water settings provide on-demand snapshots for hydrocarbon reservoirs at different times during their production history. Delays in the interpretation turn-around of 4D seismic data reduce some benefits of the PRM. These delays could adversely impact the decision making processes despite obtaining information on demand. Using fast-track approaches in 4D seismic interpretation can provide timely information for reservoir management. This work focuses on a fast-track 4D seismic qualitative interpretation in PRM environment, with the aim of choosing the best seismic amplitude attribute (4D) to use. Different seismic attributes are extracted and the one with high signal-to-noise ratio is selected to carry out the 4D qualitative interpretation. All 4D signals are juxtaposed with well production history data to increase confidence in our interpretation. The selected attribute can be interpreted and used for the foreseeable life of field. This workflow has been developed and applied on post-salt Brazilian offshore field to choose the best seismic attribute to conduct the 4D seismic qualitative interpretation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴西某油田永久油藏监测PRM装置中地震数据的快速定性解释
在深水环境中,永久油藏监测(PRM)可以按需提供油藏生产历史中不同时期的快照。四维地震资料解释周期的延迟降低了PRM的一些效益。这些延迟可能会对决策过程产生不利影响,尽管可以根据需要获取信息。采用快速通道方法进行四维地震解释可以为油藏管理提供及时的信息。本工作的重点是在PRM环境下快速进行四维地震定性解释,目的是选择最佳的地震振幅属性(4D)来使用。提取不同地震属性,选取信噪比高的属性进行四维定性解释。所有的4D信号都与井的生产历史数据并置,以提高我们解释的可信度。所选择的属性可以在可预见的字段寿命内进行解释和使用。该工作流程已在巴西盐后海上油田得到开发和应用,用于选择最佳地震属性进行四维地震定性解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Verification of Autonomous Inflow Control Valve Flow Performance Within Heavy Oil-SAGD Thermal Flow Loop Reactive vs Proactive Intelligent Well Injection Evaluation for EOR in a Stratified GOM Deepwater Wilcox Reservoir using Integrated Simulation-Surface Network Modeling A Novel Workflow for Oil Production Forecasting using Ensemble-Based Decline Curve Analysis An Artificial Intelligence Approach to Predict the Water Saturation in Carbonate Reservoir Rocks Characterization of Organic Pores within High-Maturation Shale Gas Reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1