Multi objective task scheduling based on hybrid metaheuristic algorithm for cloud environment

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS Multiagent and Grid Systems Pub Date : 2022-08-30 DOI:10.3233/mgs-220218
P. Neelakantan, N. Yadav
{"title":"Multi objective task scheduling based on hybrid metaheuristic algorithm for cloud environment","authors":"P. Neelakantan, N. Yadav","doi":"10.3233/mgs-220218","DOIUrl":null,"url":null,"abstract":"Cloud computing is gaining a huge popularity for on-demand services on a pay-per-use basis. However, single data centre is restricted in offering the services, as it does not have unlimited resource capacity mostly in the peak demand time. Generally, the count of Virtual Machines (VM) is more in public cloud; still, the security is not ensured. In contrast, the VMs are limited in private cloud with high security. So, the consideration of security levels in task scheduling is remains to be more critical for secured processing. This works intends to afford the optimization strategies for optimal task scheduling with multi-objective constraints in cloud environment. Accordingly, the proposed optimal task allocation framework considers the objectives such as execution time, risk probability, and task priority. For this, a new hybrid optimization algorithm known as Clan Updated Seagull Optimization (CUSO) algorithm is introduced in this work, which is the conceptual blending of Elephant Herding Optimization (EHO) and Seagull Optimization Algorithm (SOA). Finally, the performance of proposed work is evaluated over other conventional models with respect to certain performance measures.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mgs-220218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Cloud computing is gaining a huge popularity for on-demand services on a pay-per-use basis. However, single data centre is restricted in offering the services, as it does not have unlimited resource capacity mostly in the peak demand time. Generally, the count of Virtual Machines (VM) is more in public cloud; still, the security is not ensured. In contrast, the VMs are limited in private cloud with high security. So, the consideration of security levels in task scheduling is remains to be more critical for secured processing. This works intends to afford the optimization strategies for optimal task scheduling with multi-objective constraints in cloud environment. Accordingly, the proposed optimal task allocation framework considers the objectives such as execution time, risk probability, and task priority. For this, a new hybrid optimization algorithm known as Clan Updated Seagull Optimization (CUSO) algorithm is introduced in this work, which is the conceptual blending of Elephant Herding Optimization (EHO) and Seagull Optimization Algorithm (SOA). Finally, the performance of proposed work is evaluated over other conventional models with respect to certain performance measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
云环境下基于混合元启发式算法的多目标任务调度
云计算在按使用付费的基础上获得了按需服务的巨大普及。然而,单个数据中心在提供服务方面受到限制,因为它没有无限的资源容量,主要是在需求高峰时间。通常,公有云中虚拟机(VM)的数量更多;然而,安全并没有得到保证。而在安全性较高的私有云中,虚拟机数量有限。因此,在任务调度中考虑安全级别对于安全处理来说仍然是非常重要的。本文旨在为云环境下多目标约束下的最优任务调度提供优化策略。因此,所提出的最优任务分配框架考虑了执行时间、风险概率和任务优先级等目标。为此,本文引入了一种新的混合优化算法,即Clan - Updated Seagull optimization (CUSO)算法,该算法是大象放牧优化算法(EHO)和海鸥优化算法(SOA)的概念融合。最后,根据某些绩效指标对拟议工作的绩效进行评估,而不是其他传统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
期刊最新文献
Blockchain applications for Internet of Things (IoT): A review Sine tangent search algorithm enabled LeNet for cotton crop classification using satellite image Optimization enabled elastic scaling in cloud based on predicted load for resource management Geese jellyfish search optimization trained deep learning for multiclass plant disease detection using leaf images Adam Adadelta Optimization based bidirectional encoder representations from transformers model for fake news detection on social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1