On GANs, NLP and Architecture: Combining Human and Machine Intelligences for the Generation and Evaluation of Meaningful Designs

IF 0.5 0 ARCHITECTURE Technology Architecture and Design Pub Date : 2021-07-03 DOI:10.1080/24751448.2021.1967060
Jeffrey Huang, M. Johanes, Frederick Chando Kim, C. Doumpioti, Georg-Christoph Holz
{"title":"On GANs, NLP and Architecture: Combining Human and Machine Intelligences for the Generation and Evaluation of Meaningful Designs","authors":"Jeffrey Huang, M. Johanes, Frederick Chando Kim, C. Doumpioti, Georg-Christoph Holz","doi":"10.1080/24751448.2021.1967060","DOIUrl":null,"url":null,"abstract":"Recent advances in Generative Adversarial Networks (GANs) hold considerable promise in architecture, especially in the early, creative stages of design. However, while GANs are capable of producing infinite numbers of new designs based on a given dataset, the architectural relevance and meaningfulness of the results have been questionable. This paper presents an experimental research method to examine how human and artificial intelligences can inform each other to generate new designs that are culturally and architecturally meaningful. The paper contributes to our understanding of GANs in architecture by describing the nuances of different GAN models (SAGAN vs DCGAN) for the generation of new designs, and the use of Natural Language Processing (NLP) for the conceptual analysis of results.","PeriodicalId":36812,"journal":{"name":"Technology Architecture and Design","volume":"7 1","pages":"207 - 224"},"PeriodicalIF":0.5000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology Architecture and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751448.2021.1967060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 7

Abstract

Recent advances in Generative Adversarial Networks (GANs) hold considerable promise in architecture, especially in the early, creative stages of design. However, while GANs are capable of producing infinite numbers of new designs based on a given dataset, the architectural relevance and meaningfulness of the results have been questionable. This paper presents an experimental research method to examine how human and artificial intelligences can inform each other to generate new designs that are culturally and architecturally meaningful. The paper contributes to our understanding of GANs in architecture by describing the nuances of different GAN models (SAGAN vs DCGAN) for the generation of new designs, and the use of Natural Language Processing (NLP) for the conceptual analysis of results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论gan、NLP和架构:结合人类和机器智能来生成和评估有意义的设计
生成对抗网络(GANs)的最新进展在建筑领域具有相当大的前景,特别是在设计的早期创造性阶段。然而,虽然gan能够基于给定的数据集产生无限数量的新设计,但结果的架构相关性和意义一直受到质疑。本文提出了一种实验研究方法来研究人类和人工智能如何相互告知,以产生具有文化和建筑意义的新设计。本文通过描述用于生成新设计的不同GAN模型(SAGAN与DCGAN)的细微差别,以及使用自然语言处理(NLP)对结果进行概念分析,有助于我们理解建筑中的GAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Technology Architecture and Design
Technology Architecture and Design Arts and Humanities-Visual Arts and Performing Arts
CiteScore
1.30
自引率
0.00%
发文量
18
期刊最新文献
TAD 7:1 Issue PDF Synergetic Optimization of Timber Structures and Space The Performance of Tectonics The Long Wait for the Inevitable: Metanarratives of Construction Löyly Sauna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1