Poisson excess relative risk models: New implementations and software

IF 0.7 4区 数学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Sort-Statistics and Operations Research Transactions Pub Date : 2018-12-21 DOI:10.2436/20.8080.02.76
M. Higueras, A. Howes
{"title":"Poisson excess relative risk models: New implementations and software","authors":"M. Higueras, A. Howes","doi":"10.2436/20.8080.02.76","DOIUrl":null,"url":null,"abstract":"Two new implementations for fitting Poisson excess relative risk methods are proposed for as- \nsumed simple models. This allows for estimation of the excess relative risk associated with a \nunique exposure, where the background risk is modelled by a unique categorical variable, for \nexample gender or attained age levels. Additionally, it is shown how to fit general Poisson linear \nrelative risk models in R. Both simple methods and the R fitting are illustrated in three examples. \nThe first two examples are from the radiation epidemiology literature. Data in the third example \nare randomly generated with the purpose of sharing it jointly with the R scripts.","PeriodicalId":49497,"journal":{"name":"Sort-Statistics and Operations Research Transactions","volume":"68 1","pages":"237-252"},"PeriodicalIF":0.7000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sort-Statistics and Operations Research Transactions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2436/20.8080.02.76","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Two new implementations for fitting Poisson excess relative risk methods are proposed for as- sumed simple models. This allows for estimation of the excess relative risk associated with a unique exposure, where the background risk is modelled by a unique categorical variable, for example gender or attained age levels. Additionally, it is shown how to fit general Poisson linear relative risk models in R. Both simple methods and the R fitting are illustrated in three examples. The first two examples are from the radiation epidemiology literature. Data in the third example are randomly generated with the purpose of sharing it jointly with the R scripts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泊松超额相对风险模型:新的实现和软件
提出了两种拟合泊松超额相对风险方法的新实现。这样就可以估计与独特暴露相关的过量相对风险,其中背景风险由独特的分类变量建模,例如性别或达到的年龄水平。此外,本文还展示了如何在R中拟合一般泊松线性相对风险模型。通过三个例子说明了简单方法和R拟合。前两个例子来自辐射流行病学文献。第三个示例中的数据是随机生成的,目的是与R脚本共享。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sort-Statistics and Operations Research Transactions
Sort-Statistics and Operations Research Transactions 管理科学-统计学与概率论
CiteScore
3.10
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: SORT (Statistics and Operations Research Transactions) —formerly Qüestiió— is an international journal launched in 2003. It is published twice-yearly, in English, by the Statistical Institute of Catalonia (Idescat). The journal is co-edited by the Universitat Politècnica de Catalunya, Universitat de Barcelona, Universitat Autonòma de Barcelona, Universitat de Girona, Universitat Pompeu Fabra i Universitat de Lleida, with the co-operation of the Spanish Section of the International Biometric Society and the Catalan Statistical Society. SORT promotes the publication of original articles of a methodological or applied nature or motivated by an applied problem in statistics, operations research, official statistics or biometrics as well as book reviews. We encourage authors to include an example of a real data set in their manuscripts.
期刊最新文献
Green hybrid fleets using electric vehicles: solving the heterogeneous vehicle routing problem with multiple driving ranges and loading capacities Integer constraints for enhancing interpretability in linear regression On interpretations of tests and effect sizes in regression models with a compositional predictor Modelling count data using the logratio-normal-multinomial distribution Bayesian structured antedependence model proposals for longitudinal data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1