Numerical Simulation of Lead-Free Sn-Based Perovskite Solar Cell by Using SCAPS-1D

M. A. Shafi, H. Ullah, S. Ullah, Laiq Khan, Sumayya Bibi, B. M. Soucase
{"title":"Numerical Simulation of Lead-Free Sn-Based Perovskite Solar Cell by Using SCAPS-1D","authors":"M. A. Shafi, H. Ullah, S. Ullah, Laiq Khan, Sumayya Bibi, B. M. Soucase","doi":"10.3390/engproc2021012092","DOIUrl":null,"url":null,"abstract":"Recent developments based on lead (Pb) halide perovskites have inspired extensive research into low-cost solar cells in attempt to overcome the primary issues such as stability and toxicity that occur in this area. Solar cell simulation of lead-free perovskite (CH3NH3SnBr3) as an absorber-based solar cell was performed using SCAPS-1D simulation tool in this work. An impact of absorber layer thickness and working temperature on photovoltaic characteristics of CH3NH3SnBr3-based perovskite solar cells was investigated using numerical modeling techniques. The thickness was varied from 1.0 μm to 3.0 μm, and working temperature was varied from 290 K to 330 K, and their effect was examined on the photovoltaic parameters of proposed “Back Contact/CH3NH3SnBr3/CdS/ZnO/Front Contact” solar cell. The improvement in the efficiency of solar cell by optimization of CH3NH3SnBr3 absorber layer thickness and working temperature was observed.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021012092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Recent developments based on lead (Pb) halide perovskites have inspired extensive research into low-cost solar cells in attempt to overcome the primary issues such as stability and toxicity that occur in this area. Solar cell simulation of lead-free perovskite (CH3NH3SnBr3) as an absorber-based solar cell was performed using SCAPS-1D simulation tool in this work. An impact of absorber layer thickness and working temperature on photovoltaic characteristics of CH3NH3SnBr3-based perovskite solar cells was investigated using numerical modeling techniques. The thickness was varied from 1.0 μm to 3.0 μm, and working temperature was varied from 290 K to 330 K, and their effect was examined on the photovoltaic parameters of proposed “Back Contact/CH3NH3SnBr3/CdS/ZnO/Front Contact” solar cell. The improvement in the efficiency of solar cell by optimization of CH3NH3SnBr3 absorber layer thickness and working temperature was observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SCAPS-1D的无铅锡基钙钛矿太阳能电池数值模拟
最近基于铅(Pb)卤化物钙钛矿的发展激发了对低成本太阳能电池的广泛研究,试图克服该领域发生的稳定性和毒性等主要问题。本文利用SCAPS-1D模拟工具对无铅钙钛矿(CH3NH3SnBr3)作为吸收剂基太阳能电池进行了模拟。采用数值模拟技术研究了吸收层厚度和工作温度对ch3nh3snbr3基钙钛矿太阳能电池光伏特性的影响。厚度在1.0 ~ 3.0 μm范围内变化,工作温度在290 ~ 330 K范围内变化,考察了它们对“后接触/CH3NH3SnBr3/CdS/ZnO/前接触”太阳能电池光伏参数的影响。观察了CH3NH3SnBr3吸收层厚度和工作温度的优化对太阳能电池效率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
MNET: Semantic Segmentation for Satellite Images Based on Multi-Channel Decomposition Location-Assistive and Real-Time Query IoT-Based Transport System The Thermal Analysis of a Sensible Heat Thermal Energy Storage System Using Circular-Shaped Slag and Concrete for Medium- to High-Temperature Applications Performance Enhancement of Photovoltaic Water Pumping System Based on BLDC Motor under Partial Shading Condition Solar Powered DC Refrigerator for Small Scale Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1