Hamidreza Odabai Fard, M. Chaouch, Q. Pham, A. Vacavant, T. Chateau
{"title":"Joint hierarchical learning for efficient multi-class object detection","authors":"Hamidreza Odabai Fard, M. Chaouch, Q. Pham, A. Vacavant, T. Chateau","doi":"10.1109/WACV.2014.6836090","DOIUrl":null,"url":null,"abstract":"In addition to multi-class classification, the multi-class object detection task consists further in classifying a dominating background label. In this work, we present a novel approach where relevant classes are ranked higher and background labels are rejected. To this end, we arrange the classes into a tree structure where the classifiers are trained in a joint framework combining ranking and classification constraints. Our convex problem formulation naturally allows to apply a tree traversal algorithm that searches for the best class label and progressively rejects background labels. We evaluate our approach on the PASCAL VOC 2007 dataset and show a considerable speed-up of the detection time with increased detection performance.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"58 1","pages":"261-268"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In addition to multi-class classification, the multi-class object detection task consists further in classifying a dominating background label. In this work, we present a novel approach where relevant classes are ranked higher and background labels are rejected. To this end, we arrange the classes into a tree structure where the classifiers are trained in a joint framework combining ranking and classification constraints. Our convex problem formulation naturally allows to apply a tree traversal algorithm that searches for the best class label and progressively rejects background labels. We evaluate our approach on the PASCAL VOC 2007 dataset and show a considerable speed-up of the detection time with increased detection performance.