Multimodal data collection of human-robot humorous interactions in the Joker project

L. Devillers, S. Rosset, G. D. Duplessis, M. A. Sehili, Lucile Bechade, Agnès Delaborde, Clément Gossart, Vincent Letard, Fan Yang, Y. Yemez, Bekir Berker Turker, T. M. Sezgin, Kevin El Haddad, S. Dupont, Daniel Luzzati, Y. Estève, E. Gilmartin, N. Campbell
{"title":"Multimodal data collection of human-robot humorous interactions in the Joker project","authors":"L. Devillers, S. Rosset, G. D. Duplessis, M. A. Sehili, Lucile Bechade, Agnès Delaborde, Clément Gossart, Vincent Letard, Fan Yang, Y. Yemez, Bekir Berker Turker, T. M. Sezgin, Kevin El Haddad, S. Dupont, Daniel Luzzati, Y. Estève, E. Gilmartin, N. Campbell","doi":"10.1109/ACII.2015.7344594","DOIUrl":null,"url":null,"abstract":"Thanks to a remarkably great ability to show amusement and engagement, laughter is one of the most important social markers in human interactions. Laughing together can actually help to set up a positive atmosphere and favors the creation of new relationships. This paper presents a data collection of social interaction dialogs involving humor between a human participant and a robot. In this work, interaction scenarios have been designed in order to study social markers such as laughter. They have been implemented within two automatic systems developed in the Joker project: a social dialog system using paralinguistic cues and a task-based dialog system using linguistic content. One of the major contributions of this work is to provide a context to study human laughter produced during a human-robot interaction. The collected data will be used to build a generic intelligent user interface which provides a multimodal dialog system with social communication skills including humor and other informal socially oriented behaviors. This system will emphasize the fusion of verbal and non-verbal channels for emotional and social behavior perception, interaction and generation capabilities.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"122 1","pages":"348-354"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Thanks to a remarkably great ability to show amusement and engagement, laughter is one of the most important social markers in human interactions. Laughing together can actually help to set up a positive atmosphere and favors the creation of new relationships. This paper presents a data collection of social interaction dialogs involving humor between a human participant and a robot. In this work, interaction scenarios have been designed in order to study social markers such as laughter. They have been implemented within two automatic systems developed in the Joker project: a social dialog system using paralinguistic cues and a task-based dialog system using linguistic content. One of the major contributions of this work is to provide a context to study human laughter produced during a human-robot interaction. The collected data will be used to build a generic intelligent user interface which provides a multimodal dialog system with social communication skills including humor and other informal socially oriented behaviors. This system will emphasize the fusion of verbal and non-verbal channels for emotional and social behavior perception, interaction and generation capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joker项目中人机幽默互动的多模式数据收集
笑是一种表现娱乐和参与的非凡能力,是人类交往中最重要的社会标志之一。一起笑实际上可以帮助建立一个积极的氛围,有利于建立新的关系。本文介绍了人类参与者和机器人之间涉及幽默的社会互动对话的数据收集。在这项工作中,互动场景的设计是为了研究笑声等社会标志。它们已经在Joker项目中开发的两个自动系统中实现:使用副语言线索的社交对话系统和使用语言内容的基于任务的对话系统。这项工作的主要贡献之一是为研究人机交互过程中产生的人类笑声提供了一个背景。收集到的数据将用于构建一个通用的智能用户界面,该界面提供一个具有社交沟通技巧的多模态对话系统,包括幽默和其他非正式的社交导向行为。该系统将强调情感和社会行为感知、互动和生成能力的语言和非语言渠道的融合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Avatar and participant gender differences in the perception of uncanniness of virtual humans Neural conditional ordinal random fields for agreement level estimation Fundamental frequency modeling using wavelets for emotional voice conversion Bimodal feature-based fusion for real-time emotion recognition in a mobile context Harmony search for feature selection in speech emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1