{"title":"Electrical Stimulation and Electrode Properties. Part 2: Pure Metal Electrodes","authors":"M. Stevenson, K. Baylor, M. Stecker, B. Netherton","doi":"10.1080/1086508X.2010.11079783","DOIUrl":null,"url":null,"abstract":"ABSTRACT. Electrical stimulation can cause significant damage to clinical electrodes as well as patient injury. In this study, the effects of stimulation on pure metal electrodes were investigated without the complexities introduced by the multiple elements that make up the clinical electrode. As with the clinical electrodes, there was significant decomposition of pure stainless steel anodes with no associated significant changes in the cathodes when stimulation employed long pulse durations. Effects of stimulation were greater when the anode and cathode were closer under constant voltage stimulation but were distance independent under constant current stimulation. High ionic content of the solution also increased the degree of damage to the anode as did the presence of chloride in the solution. Electrode composition also influenced the amount damage to the anode. Platinum and platinum-iridium electrodes showed no damage with any stimulus while stainless steel showed the lowest resistance to corrosion for direct current (DC) stimulation. Tungsten electrodes behaved very differently than stainless steel, decomposing with pulse stimulation and resisting decomposition during DC stimulation because of the formation of surface protective layers. Because platinum was able to maintain high levels of current over time, prolonged stimulation produced dramatic increases in the temperature of the solution; however, even short periods of stimulation were sufficient to produce dramatic changes in pH in the neighborhood of the electrode.","PeriodicalId":7480,"journal":{"name":"American Journal of Electroneurodiagnostic Technology","volume":"35 1","pages":"263 - 296"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Electroneurodiagnostic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1086508X.2010.11079783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
ABSTRACT. Electrical stimulation can cause significant damage to clinical electrodes as well as patient injury. In this study, the effects of stimulation on pure metal electrodes were investigated without the complexities introduced by the multiple elements that make up the clinical electrode. As with the clinical electrodes, there was significant decomposition of pure stainless steel anodes with no associated significant changes in the cathodes when stimulation employed long pulse durations. Effects of stimulation were greater when the anode and cathode were closer under constant voltage stimulation but were distance independent under constant current stimulation. High ionic content of the solution also increased the degree of damage to the anode as did the presence of chloride in the solution. Electrode composition also influenced the amount damage to the anode. Platinum and platinum-iridium electrodes showed no damage with any stimulus while stainless steel showed the lowest resistance to corrosion for direct current (DC) stimulation. Tungsten electrodes behaved very differently than stainless steel, decomposing with pulse stimulation and resisting decomposition during DC stimulation because of the formation of surface protective layers. Because platinum was able to maintain high levels of current over time, prolonged stimulation produced dramatic increases in the temperature of the solution; however, even short periods of stimulation were sufficient to produce dramatic changes in pH in the neighborhood of the electrode.