Komparasi Algoritma Data Mining Dalam Ketuntasan Belajar Daring Siswa Pada Masa Pandemi Covid 19

Muhammad Saiful, Hariman Bahtiar, Amri Muliawan Nur, Yupi Kuspandi Putra
{"title":"Komparasi Algoritma Data Mining Dalam Ketuntasan Belajar Daring Siswa Pada Masa Pandemi Covid 19","authors":"Muhammad Saiful, Hariman Bahtiar, Amri Muliawan Nur, Yupi Kuspandi Putra","doi":"10.29408/jit.v6i2.14850","DOIUrl":null,"url":null,"abstract":"This research was conducted at SMA Negri 3 Selong and became the focus of students in class XI IPA and Social Studies. The sampling technique used purposive sampling method. This study aims to describe the extent to which the level of completeness of students during post-covid-19 pandemic learning with online media. This study uses a classification algorithm that functions to find a model that distinguishes data classes or data concepts, with the specific objective of determining the class of unknown object labels. The method used is the PSO-based Naïve Bayes and Naïve Bayes Comparison Algorithms. The results of this study indicate that the use of online media during online learning using the naïve Bayes algorithm is 83.91%, and the PSO-based naïve Bayes algorithm is 91.98%, from the experimental results and testing of the two algorithms, the results of the confusion matrix and AUC testing can be obtained which can be determined the best accuracy value is the PSO-based Naïve Bayes algorithm. As for the comparison of the results in the form of an accuracy value obtained by the Naïve Bayes Algorithm of 83.91% and the PSO-Based Naïve Bayes Algorithm of 91.98% and the difference in the level of accuracy of 8.07%, so it can be concluded that the algorithm that is suitable for classifying student learning completeness during the covid 19 pandemic is Naive Bayes based on particle swarm optimization.","PeriodicalId":13567,"journal":{"name":"Infotek : Jurnal Informatika dan Teknologi","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotek : Jurnal Informatika dan Teknologi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29408/jit.v6i2.14850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research was conducted at SMA Negri 3 Selong and became the focus of students in class XI IPA and Social Studies. The sampling technique used purposive sampling method. This study aims to describe the extent to which the level of completeness of students during post-covid-19 pandemic learning with online media. This study uses a classification algorithm that functions to find a model that distinguishes data classes or data concepts, with the specific objective of determining the class of unknown object labels. The method used is the PSO-based Naïve Bayes and Naïve Bayes Comparison Algorithms. The results of this study indicate that the use of online media during online learning using the naïve Bayes algorithm is 83.91%, and the PSO-based naïve Bayes algorithm is 91.98%, from the experimental results and testing of the two algorithms, the results of the confusion matrix and AUC testing can be obtained which can be determined the best accuracy value is the PSO-based Naïve Bayes algorithm. As for the comparison of the results in the form of an accuracy value obtained by the Naïve Bayes Algorithm of 83.91% and the PSO-Based Naïve Bayes Algorithm of 91.98% and the difference in the level of accuracy of 8.07%, so it can be concluded that the algorithm that is suitable for classifying student learning completeness during the covid 19 pandemic is Naive Bayes based on particle swarm optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Covid - 19大流行期间学生在线学习的数据挖掘算法的比较
抽样技术采用目的抽样法。本研究旨在描述学生在covid-19大流行后使用在线媒体学习的完整程度。本研究使用了一种分类算法,其功能是找到一个区分数据类别或数据概念的模型,其具体目标是确定未知对象标签的类别。使用的方法是基于pso的Naïve贝叶斯和Naïve贝叶斯比较算法。本研究结果表明,在在线学习过程中,使用naïve贝叶斯算法的在线媒体使用率为83.91%,使用基于pso的naïve贝叶斯算法的在线媒体使用率为91.98%,从两种算法的实验结果和测试中,可以得到混淆矩阵和AUC测试的结果,可以确定精度值最好的是基于pso的Naïve贝叶斯算法。对比Naïve贝叶斯算法得到的准确率值为83.91%,与基于pso的Naïve贝叶斯算法得到的准确率值为91.98%,准确率差值为8.07%,因此可以得出结论,适用于covid - 19大流行期间学生学习完整性分类的算法是基于粒子群优化的朴素贝叶斯算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Penerapan Sistem Informasi Geografis Dalam Pemetaan Toko Oleh - Oleh Khas Lombok Penerapan Model Decision Tree Menggunakan Python Untuk Prediksi Faktor Dominan Penyebab Penyakit Stroke Penerapan Metode Waterfall dalam Pengembangan Aplikasi Schedule Maintenance Alat Produksi Perancangan Sistem Informasi Absensi Menggunakan Metode QR Code Berbasis Android Aplikasi IT Support Work Orders Berbasis Web Dalam Rangka Menuju Sidoarjo Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1