K. Takano, K. Katayama, S. Amakawa, T. Yoshida, M. Fujishima
{"title":"56-Gbit/s 16-QAM wireless link with 300-GHz-band CMOS transmitter","authors":"K. Takano, K. Katayama, S. Amakawa, T. Yoshida, M. Fujishima","doi":"10.1109/MWSYM.2017.8058697","DOIUrl":null,"url":null,"abstract":"The 300-GHz band enables ultrahigh-speed wireless communication because of its vast frequency range. We present a wireless link with a 300-GHz-band CMOS transmitter that improves the system signal-to-noise ratio (SNR) by using a frequency-doubler-based subharmonic mixer called a “square mixer” and an architecture with image and local oscillator (LO) suppression. It achieved wireless digital transmission at 56 Gbit/s over 5 cm with 16-QAM. In addition, we compare the performance of wireless links using a figure-of-merit (FoM). This wireless link has an approximately 7.5 times higher FoM than a recently reported wireless link based on a CMOS transmitter.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"57 1","pages":"793-796"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
The 300-GHz band enables ultrahigh-speed wireless communication because of its vast frequency range. We present a wireless link with a 300-GHz-band CMOS transmitter that improves the system signal-to-noise ratio (SNR) by using a frequency-doubler-based subharmonic mixer called a “square mixer” and an architecture with image and local oscillator (LO) suppression. It achieved wireless digital transmission at 56 Gbit/s over 5 cm with 16-QAM. In addition, we compare the performance of wireless links using a figure-of-merit (FoM). This wireless link has an approximately 7.5 times higher FoM than a recently reported wireless link based on a CMOS transmitter.