D. Pozharskiy, Noah J. Wichrowski, A. Duncan, G. Pavliotis, I. Kevrekidis
{"title":"Manifold learning for accelerating coarse-grained optimization","authors":"D. Pozharskiy, Noah J. Wichrowski, A. Duncan, G. Pavliotis, I. Kevrekidis","doi":"10.3934/jcd.2020021","DOIUrl":null,"url":null,"abstract":"Algorithms proposed for solving high-dimensional optimization problems with no derivative information frequently encounter the \"curse of dimensionality,\" becoming ineffective as the dimension of the parameter space grows. One feature of a subclass of such problems that are effectively low-dimensional is that only a few parameters (or combinations thereof) are important for the optimization and must be explored in detail. Knowing these parameters/ combinations in advance would greatly simplify the problem and its solution. We propose the data-driven construction of an effective (coarse-grained, \"trend\") optimizer, based on data obtained from ensembles of brief simulation bursts with an \"inner\" optimization algorithm, that has the potential to accelerate the exploration of the parameter space. The trajectories of this \"effective optimizer\" quickly become attracted onto a slow manifold parameterized by the few relevant parameter combinations. We obtain the parameterization of this low-dimensional, effective optimization manifold on the fly using data mining/manifold learning techniques on the results of simulation (inner optimizer iteration) burst ensembles and exploit it locally to \"jump\" forward along this manifold. As a result, we can bias the exploration of the parameter space towards the few, important directions and, through this \"wrapper algorithm,\" speed up the convergence of traditional optimization algorithms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2020021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Algorithms proposed for solving high-dimensional optimization problems with no derivative information frequently encounter the "curse of dimensionality," becoming ineffective as the dimension of the parameter space grows. One feature of a subclass of such problems that are effectively low-dimensional is that only a few parameters (or combinations thereof) are important for the optimization and must be explored in detail. Knowing these parameters/ combinations in advance would greatly simplify the problem and its solution. We propose the data-driven construction of an effective (coarse-grained, "trend") optimizer, based on data obtained from ensembles of brief simulation bursts with an "inner" optimization algorithm, that has the potential to accelerate the exploration of the parameter space. The trajectories of this "effective optimizer" quickly become attracted onto a slow manifold parameterized by the few relevant parameter combinations. We obtain the parameterization of this low-dimensional, effective optimization manifold on the fly using data mining/manifold learning techniques on the results of simulation (inner optimizer iteration) burst ensembles and exploit it locally to "jump" forward along this manifold. As a result, we can bias the exploration of the parameter space towards the few, important directions and, through this "wrapper algorithm," speed up the convergence of traditional optimization algorithms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.