Quantifying sources of uncertainty in drug discovery predictions with probabilistic models

Stanley E. Lazic , Dominic P. Williams
{"title":"Quantifying sources of uncertainty in drug discovery predictions with probabilistic models","authors":"Stanley E. Lazic ,&nbsp;Dominic P. Williams","doi":"10.1016/j.ailsci.2021.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Knowing the uncertainty in a prediction is critical when making expensive investment decisions and when patient safety is paramount, but machine learning (ML) models in drug discovery typically only provide a single best estimate and ignore all sources of uncertainty. Predictions from these models may therefore be over-confident, which can put patients at risk and waste resources when compounds that are destined to fail are further developed. Probabilistic predictive models (PPMs) can incorporate all sources of uncertainty and they return a distribution of predicted values that represents the uncertainty in the prediction. We describe seven sources of uncertainty in PPMs: data, distribution function, mean function, variance function, link function(s), parameters, and hyperparameters. We use toxicity prediction as a running example, but the same principles apply for all prediction models. The consequences of ignoring uncertainty and how PPMs account for uncertainty are also described. We aim to make the discussion accessible to a broad non-mathematical audience. Equations are provided to make ideas concrete for mathematical readers (but can be skipped without loss of understanding) and code is available for computational researchers (<span>https://github.com/stanlazic/ML_uncertainty_quantification</span><svg><path></path></svg>).</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ailsci.2021.100004","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318521000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Knowing the uncertainty in a prediction is critical when making expensive investment decisions and when patient safety is paramount, but machine learning (ML) models in drug discovery typically only provide a single best estimate and ignore all sources of uncertainty. Predictions from these models may therefore be over-confident, which can put patients at risk and waste resources when compounds that are destined to fail are further developed. Probabilistic predictive models (PPMs) can incorporate all sources of uncertainty and they return a distribution of predicted values that represents the uncertainty in the prediction. We describe seven sources of uncertainty in PPMs: data, distribution function, mean function, variance function, link function(s), parameters, and hyperparameters. We use toxicity prediction as a running example, but the same principles apply for all prediction models. The consequences of ignoring uncertainty and how PPMs account for uncertainty are also described. We aim to make the discussion accessible to a broad non-mathematical audience. Equations are provided to make ideas concrete for mathematical readers (but can be skipped without loss of understanding) and code is available for computational researchers (https://github.com/stanlazic/ML_uncertainty_quantification).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用概率模型量化药物发现预测中的不确定性来源
当做出昂贵的投资决策和患者安全至关重要时,了解预测中的不确定性至关重要,但药物发现中的机器学习(ML)模型通常只提供一个最佳估计,而忽略了所有不确定性来源。因此,这些模型的预测可能过于自信,这可能使患者面临风险,并在注定失败的化合物进一步开发时浪费资源。概率预测模型(PPMs)可以包含所有不确定性的来源,并且它们返回表示预测中的不确定性的预测值的分布。我们描述了PPMs中的七个不确定性来源:数据、分布函数、均值函数、方差函数、链接函数、参数和超参数。我们以毒性预测为例,但同样的原理适用于所有的预测模型。还描述了忽略不确定性的后果以及PPMs如何解释不确定性。我们的目标是使广泛的非数学观众可以进行讨论。为数学读者提供了公式,使思想具体化(但可以跳过而不会失去理解),计算研究人员可以使用代码(https://github.com/stanlazic/ML_uncertainty_quantification)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
期刊最新文献
Modeling PROTAC degradation activity with machine learning Machine learning proteochemometric models for Cereblon glue activity predictions Editorial Board Statistical approaches enabling technology-specific assay interference prediction from large screening data sets Federated learning for predicting compound mechanism of action based on image-data from cell painting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1