Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke

L. Volz, A. Rehme, J. Michely, C. Nettekoven, S. Eickhoff, Gereon R. Fink, C. Grefkes
{"title":"Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke","authors":"L. Volz, A. Rehme, J. Michely, C. Nettekoven, S. Eickhoff, Gereon R. Fink, C. Grefkes","doi":"10.1093/cercor/bhw034","DOIUrl":null,"url":null,"abstract":"Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"22 1","pages":"2882 - 2894"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"99","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral Cortex (New York, NY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/cercor/bhw034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 99

Abstract

Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
塑造早期神经网络重组促进脑卒中后运动功能
神经可塑性是脑卒中后皮层重组的主要驱动因素。我们在此测试了在物理治疗前通过间歇性脑波爆发刺激(iTBS)反复增强运动皮质可塑性是否可以促进中风后早期功能的恢复。功能磁共振成像(fMRI)用于阐明潜在的神经机制。26例首次住院的卒中患者(卒中后时间:1-16天)采用假对照设计,随机分为两组。在物理治疗之前,连续5天在同侧初级运动皮质(m1刺激组)或顶枕顶点(对照刺激组)上施用iTBS。在第一次刺激前1天和最后一次刺激后1天评估手部运动功能、皮质兴奋性和静息状态fMRI。与对照组相比,m1刺激组的握力恢复明显更强。高水平的运动网络连通性与更好的运动结果相关。与此一致的是,对照组刺激的患者表现出运动网络的半球内和半球间连通性下降,而m1刺激组则没有这种情况。因此,在恢复期脑卒中患者的主要物理治疗中加入iTBS似乎会干扰运动网络的退化,这可能反映了脑卒中后脑缺血的缓解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consistently increased dorsolateral prefrontal cortex activity during the exposure to acute stressors Conditioning and pseudoconditioning differently change intrinsic excitability of inhibitory interneurons in the neocortex Phonological properties of logographic words modulate brain activation in bilinguals: a comparative study of Chinese characters and Japanese Kanji Inferior parietal cortex represents relational structures for explicit transitive inference In vivo ephaptic coupling allows memory network formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1