Adsorption of NO (or NH3) +O2 over the Commercial SCR Catalyst Characterized by EPR

Du Yun-gui, Liang Yun-tao, Zhong Qin
{"title":"Adsorption of NO (or NH3) +O2 over the Commercial SCR Catalyst Characterized by EPR","authors":"Du Yun-gui, Liang Yun-tao, Zhong Qin","doi":"10.1109/CDCIEM.2011.492","DOIUrl":null,"url":null,"abstract":"The adsorption of reactants over the commerciallized SCR catalyst suface was investigated by EPR, as well as the influence of H2O and SO2. The results showed that the V4+ over the catalyst could be oxidized under NO + O2 atmosphere, andNH3 was adsorbed on Brönsted acid sites. The amounts of V4+and super oxide ions were promoted at the presence of H2O andSO2 after adsorption. However, the intensity of Fe3+ decreased when H2O and SO2 were present, indicating the favorable effect of Fe3+ for anti-poisoning.","PeriodicalId":6328,"journal":{"name":"2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring","volume":"2 1","pages":"1953-1956"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDCIEM.2011.492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption of reactants over the commerciallized SCR catalyst suface was investigated by EPR, as well as the influence of H2O and SO2. The results showed that the V4+ over the catalyst could be oxidized under NO + O2 atmosphere, andNH3 was adsorbed on Brönsted acid sites. The amounts of V4+and super oxide ions were promoted at the presence of H2O andSO2 after adsorption. However, the intensity of Fe3+ decreased when H2O and SO2 were present, indicating the favorable effect of Fe3+ for anti-poisoning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EPR表征SCR催化剂对NO(或NH3) +O2的吸附
采用EPR研究了反应物在商品化SCR催化剂表面的吸附,以及H2O和SO2对催化剂表面吸附的影响。结果表明,在NO + O2气氛下,催化剂上的V4+能被氧化,nh3吸附在Brönsted酸位上。吸附后H2O和so2的存在促进了V4+和超氧离子的数量。但当有H2O和SO2存在时,Fe3+的强度降低,表明Fe3+具有良好的抗中毒作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Research on Equivalence Network Concentrated with Wind Farms Synthesis and Characterization of the Pb5(PxAs1-xO4)3Cl Solid Solutions Initial Identification of an Manganese Resistant Microorgnism The Study of Underground Water Treatment Techniques for Acid In-Situ Leaching of Uranium: Surface Water Treatment Combined with the Natural Purification Instruction Experiment of Study on BAF to Extract Potassium from Molasses Alcohol Wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1