Spatio-temporal analysis of EEG signal during consciousness using convolutional neural network

Minji Lee, Seul-Ki Yeom, Benjamin Baird, O. Gosseries, Jaakko O. Nieminen, G. Tononi, Seong-Whan Lee
{"title":"Spatio-temporal analysis of EEG signal during consciousness using convolutional neural network","authors":"Minji Lee, Seul-Ki Yeom, Benjamin Baird, O. Gosseries, Jaakko O. Nieminen, G. Tononi, Seong-Whan Lee","doi":"10.1109/IWW-BCI.2018.8311489","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) measurement could help to distinguish the level of consciousness in an individual without requiring a behavioral response, which could be useful as a diagnostic aid in patients with disorders of consciousness. In this study, we explored the EEG-evoked perturbation and analyzed consciousness using event-related spectral perturbation and convolutional neural network. We observed a novel EEG neurophysiological signature that can be used to monitor brain activity during unconsciousness. Also, the performance accuracy in the parietal region was higher than in the frontal region. The sensitivity for conscious experience was 90.9%, whereas sensitivity for unconscious experience was at the chance level in the parietal region. These results could be evidence for the importance of the posterior hot zone and could help shed light on the internal neural dynamics related to conscious experience.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"80 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Electroencephalogram (EEG) measurement could help to distinguish the level of consciousness in an individual without requiring a behavioral response, which could be useful as a diagnostic aid in patients with disorders of consciousness. In this study, we explored the EEG-evoked perturbation and analyzed consciousness using event-related spectral perturbation and convolutional neural network. We observed a novel EEG neurophysiological signature that can be used to monitor brain activity during unconsciousness. Also, the performance accuracy in the parietal region was higher than in the frontal region. The sensitivity for conscious experience was 90.9%, whereas sensitivity for unconscious experience was at the chance level in the parietal region. These results could be evidence for the importance of the posterior hot zone and could help shed light on the internal neural dynamics related to conscious experience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的意识过程脑电信号时空分析
脑电图(EEG)测量可以在不需要行为反应的情况下帮助区分个体的意识水平,这可以作为意识障碍患者的诊断辅助工具。在这项研究中,我们探索了脑电图诱发的扰动,并利用事件相关谱扰动和卷积神经网络分析了意识。我们观察到一种新的脑电图神经生理特征,可以用来监测无意识状态下的大脑活动。同时,顶叶区域的表现准确性高于额叶区域。对有意识经验的敏感性为90.9%,而对无意识经验的敏感性在顶叶区域处于偶然水平。这些结果可以证明后热区的重要性,并有助于阐明与意识体验相关的内部神经动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embodied cognition Design of a brain-controlled robot arm system based on upper-limb movement imagery Applying deep-learning to a top-down SSVEP BMI BCI classification using locally generated CSP features Evaluation of outlier prevalence of density distribution in brain computed tomography: Comparison of kurtosis and quartile statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1