Orchestration Procedures for the Network Intelligence Stratum in 6G Networks

L. Chatzieleftheriou, M. Gramaglia, M. Camelo, Andres Garcia-Saavedra, E. Kosmatos, Michele Gucciardo, Paola Soto, G. Iosifidis, L. Fuentes, Gines Garcia-Aviles, Andra Lutu, Gabriele Baldoni, M. Fiore
{"title":"Orchestration Procedures for the Network Intelligence Stratum in 6G Networks","authors":"L. Chatzieleftheriou, M. Gramaglia, M. Camelo, Andres Garcia-Saavedra, E. Kosmatos, Michele Gucciardo, Paola Soto, G. Iosifidis, L. Fuentes, Gines Garcia-Aviles, Andra Lutu, Gabriele Baldoni, M. Fiore","doi":"10.1109/EuCNC/6GSummit58263.2023.10188297","DOIUrl":null,"url":null,"abstract":"The quest for autonomous mobile networks introdu-ces the need for fully native support for Network Intelligence (NI) algorithms, typically based on Artificial Intelligence tools like Machine Learning, which shall be gathered into a NI stratum. The NI stratum is responsible for the full automation of the NI operation in the network, including the management of the life-cycle of NI algorithms, in a way that is synergic with traditional network management and orchestration framework. In this regard, the NI stratum must accommodate the unique requirements of NI algorithms, which differ from the ones of, e.g., virtual network functions, and thus plays a critical role in the native integration of NI into current network architectures. In this paper, we leverage the recently proposed concept of Network Intelligence Orchestrator (NIO) to (i) define the specific requirements of NI algorithms, and (ii) discuss the procedures that shall be supported by an NIO sitting in the NI stratum to effectively manage NI algorithms. We then (iii) introduce a reference implementation of the NIO defined above using cloud-native open-source tools.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"53 1","pages":"347-352"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quest for autonomous mobile networks introdu-ces the need for fully native support for Network Intelligence (NI) algorithms, typically based on Artificial Intelligence tools like Machine Learning, which shall be gathered into a NI stratum. The NI stratum is responsible for the full automation of the NI operation in the network, including the management of the life-cycle of NI algorithms, in a way that is synergic with traditional network management and orchestration framework. In this regard, the NI stratum must accommodate the unique requirements of NI algorithms, which differ from the ones of, e.g., virtual network functions, and thus plays a critical role in the native integration of NI into current network architectures. In this paper, we leverage the recently proposed concept of Network Intelligence Orchestrator (NIO) to (i) define the specific requirements of NI algorithms, and (ii) discuss the procedures that shall be supported by an NIO sitting in the NI stratum to effectively manage NI algorithms. We then (iii) introduce a reference implementation of the NIO defined above using cloud-native open-source tools.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6G网络中网络智能层业务流程
对自主移动网络的追求引入了对网络智能(NI)算法的完全本地支持的需求,这些算法通常基于机器学习等人工智能工具,这些工具将被收集到NI层中。NI层负责网络中NI操作的完全自动化,包括NI算法生命周期的管理,以与传统网络管理和编排框架协同的方式。在这方面,NI层必须适应NI算法的独特需求,这些需求不同于虚拟网络功能等,因此在将NI原生集成到当前网络架构中起着关键作用。在本文中,我们利用最近提出的网络智能编排器(NIO)的概念来(i)定义NI算法的具体要求,(ii)讨论位于NI层的NIO应支持的程序,以有效地管理NI算法。然后,我们(iii)使用云原生开源工具介绍上面定义的NIO的参考实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
385
期刊最新文献
Undersampling and SNR Degradation in Practical Direct RF Sampling Systems Research Challenges in Trustworthy Artificial Intelligence and Computing for Health: The Case of the PRE-ACT project Inter-Satellite Link Prediction for Non-Terrestrial Networks Using Supervised Learning AI-Powered Edge Computing Evolution for Beyond 5G Communication Networks Phase Modulation-based Fronthaul Network for 5G mmWave FR-2 Signal Transmission over Hybrid Links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1