S. Mittal, S. Gupta, A. Nainani, M. Abraham, K. Schuegraf, S. Lodha, U. Ganguly
{"title":"Epitaxialy defined (ED) FinFET: to reduce VT variability and enable multiple VT","authors":"S. Mittal, S. Gupta, A. Nainani, M. Abraham, K. Schuegraf, S. Lodha, U. Ganguly","doi":"10.1109/DRC.2012.6256997","DOIUrl":null,"url":null,"abstract":"Device variability has become a major concern for CMOS technology [1]. Various sources of variability include Random Dopant Fluctuation (RDF), Gate Edge Roughness (GER) and Line Edge Roughness (LER) [2]. The introduction of FinFETs at 22nm node has two issues. Firstly, the effect of RDF is considerably reduced due to undoped fins [3]. But the aggressive fin width (Wfin) requirement (~Lg/3 [4]) to reduce short channel effect aggravates the electrical impact of LER and makes it greatest contributor to patterning induced variability [2]. Moreover, the edge roughness does not scale with technology and remains independent of the type of lithography used [5]. Secondly, multiple threshold voltage (VT) is achieved in planar technology by various patterned implant steps, which is unavailable for FinFET technology as the fin is undoped. Multiple VT transistor technology is essential for power vs. performance optimization by circuit designers [6]. In this work, we propose an alternative to conventional FinFET structure which can (a) reduce overall variability by 4× reduction in sensitivity to LER and (b) enable multiple VT by applying body bias dynamically without any costly patterned implant steps.","PeriodicalId":6808,"journal":{"name":"70th Device Research Conference","volume":"10 1","pages":"127-128"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"70th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2012.6256997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Device variability has become a major concern for CMOS technology [1]. Various sources of variability include Random Dopant Fluctuation (RDF), Gate Edge Roughness (GER) and Line Edge Roughness (LER) [2]. The introduction of FinFETs at 22nm node has two issues. Firstly, the effect of RDF is considerably reduced due to undoped fins [3]. But the aggressive fin width (Wfin) requirement (~Lg/3 [4]) to reduce short channel effect aggravates the electrical impact of LER and makes it greatest contributor to patterning induced variability [2]. Moreover, the edge roughness does not scale with technology and remains independent of the type of lithography used [5]. Secondly, multiple threshold voltage (VT) is achieved in planar technology by various patterned implant steps, which is unavailable for FinFET technology as the fin is undoped. Multiple VT transistor technology is essential for power vs. performance optimization by circuit designers [6]. In this work, we propose an alternative to conventional FinFET structure which can (a) reduce overall variability by 4× reduction in sensitivity to LER and (b) enable multiple VT by applying body bias dynamically without any costly patterned implant steps.