A. Amer, Ali Alshehri, H. Saiari, Ali Meshaikhis, Abdulaziz Alshamrany
{"title":"Artificial Intelligence AI Assisted Thermography to Detect Corrosion Under Insulation CUI","authors":"A. Amer, Ali Alshehri, H. Saiari, Ali Meshaikhis, Abdulaziz Alshamrany","doi":"10.2118/204690-ms","DOIUrl":null,"url":null,"abstract":"\n Corrosion under insulation (CUI) is a critical challenge that affects the integrity of assets where the oil and gas industry is not immune. Its severity arises due to its hidden nature as it can often times go unnoticed. CUI is stimulated, in principle, by moisture ingress through the insulation layers to the surface of the pipeline. This Artificial Intelligence (AI)-powered detection technology stemmed from an urgent need to detect the presence of these corrosion types.\n The new approach is based on a Cyber Physical (CP) system that maximizes the potential of thermographic imaging by using a Machine Learning application of Artificial Intelligence. In this work, we describe how common image processing techniques from infra-red images of assets can be enhanced using a machine learning approach allowing the detection of locations highly vulnerable to corrosion through pinpointing locations of CUI anomalies and areas of concern. The machine learning is examining the progression of thermal images, captured over time, corrosion and factors that cause this degradation are predicted by extracting thermal anomaly features and correlating them with corrosion and irregularities in the structural integrity of assets verified visually during the initial learning phase of the ML algorithm. The ML classifier has shown outstanding results in predicting CUI anomalies with a predictive accuracy in the range of 85 – 90% projected from 185 real field assets. Also, IR imaging by itself is subjective and operator dependent, however with this cyber physical transfer learning approach, such dependency has been eliminated. The results and conclusions of this work on real field assets in operation demonstrate the feasibility of this technique to predict and detect thermal anomalies directly correlated to CUI.\n This innovative work has led to the development of a cyber-physical that meets the demands of inspection units across the oil and gas industry, providing a real-time system and online assessment tool to monitor the presence of CUI enhancing the output from thermography technologies, using Artificial Intelligence (AI) and machine learning technology. Additional benefits of this approach include safety enhancement through non-contact online inspection and cost savings by reducing the associated scaffolding and downtime.","PeriodicalId":11024,"journal":{"name":"Day 4 Wed, December 01, 2021","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Wed, December 01, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204690-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Corrosion under insulation (CUI) is a critical challenge that affects the integrity of assets where the oil and gas industry is not immune. Its severity arises due to its hidden nature as it can often times go unnoticed. CUI is stimulated, in principle, by moisture ingress through the insulation layers to the surface of the pipeline. This Artificial Intelligence (AI)-powered detection technology stemmed from an urgent need to detect the presence of these corrosion types.
The new approach is based on a Cyber Physical (CP) system that maximizes the potential of thermographic imaging by using a Machine Learning application of Artificial Intelligence. In this work, we describe how common image processing techniques from infra-red images of assets can be enhanced using a machine learning approach allowing the detection of locations highly vulnerable to corrosion through pinpointing locations of CUI anomalies and areas of concern. The machine learning is examining the progression of thermal images, captured over time, corrosion and factors that cause this degradation are predicted by extracting thermal anomaly features and correlating them with corrosion and irregularities in the structural integrity of assets verified visually during the initial learning phase of the ML algorithm. The ML classifier has shown outstanding results in predicting CUI anomalies with a predictive accuracy in the range of 85 – 90% projected from 185 real field assets. Also, IR imaging by itself is subjective and operator dependent, however with this cyber physical transfer learning approach, such dependency has been eliminated. The results and conclusions of this work on real field assets in operation demonstrate the feasibility of this technique to predict and detect thermal anomalies directly correlated to CUI.
This innovative work has led to the development of a cyber-physical that meets the demands of inspection units across the oil and gas industry, providing a real-time system and online assessment tool to monitor the presence of CUI enhancing the output from thermography technologies, using Artificial Intelligence (AI) and machine learning technology. Additional benefits of this approach include safety enhancement through non-contact online inspection and cost savings by reducing the associated scaffolding and downtime.