Optically-induced cell fusion on microfluidic chip utilizing locally enhanced electric field

P. Yang, C. Wang, G. Lee
{"title":"Optically-induced cell fusion on microfluidic chip utilizing locally enhanced electric field","authors":"P. Yang, C. Wang, G. Lee","doi":"10.1109/TRANSDUCERS.2015.7180913","DOIUrl":null,"url":null,"abstract":"This work reports a new approach called optically-induced cell fusion (OICF) which integrates cell-pairing microstructures and an optically-induced system to achieve cell fusion with high yields and efficiency. It is the first time in literature that cell-pairing SU8 microstructures were combined with optically-induced “virtual” electrodes to form the OICF system such that precise cell-pairing and high-yield cell fusion could be achieved. Experimental results showed that HeLa cells and MCF-7 cells could be successfully fused using this new approach. Furthermore, the new method allows one to selectively fuse cells by using addressable light patterns. It is therefore promising for further biomedical applications.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7180913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports a new approach called optically-induced cell fusion (OICF) which integrates cell-pairing microstructures and an optically-induced system to achieve cell fusion with high yields and efficiency. It is the first time in literature that cell-pairing SU8 microstructures were combined with optically-induced “virtual” electrodes to form the OICF system such that precise cell-pairing and high-yield cell fusion could be achieved. Experimental results showed that HeLa cells and MCF-7 cells could be successfully fused using this new approach. Furthermore, the new method allows one to selectively fuse cells by using addressable light patterns. It is therefore promising for further biomedical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用局部增强电场的微流控芯片光诱导细胞融合
这项工作报告了一种称为光诱导细胞融合(OICF)的新方法,该方法将细胞配对微结构和光诱导系统结合在一起,以高产量和高效率实现细胞融合。这是文献中首次将细胞配对SU8微结构与光诱导的“虚拟”电极结合形成OICF系统,从而实现精确的细胞配对和高产量的细胞融合。实验结果表明,该方法可成功融合HeLa细胞和MCF-7细胞。此外,新方法允许人们通过使用可寻址的光模式来选择性地融合细胞。因此,它具有进一步的生物医学应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A CMOS-based poly-silicon sub-micron wire biosensor for multiple biomarker detections in clinical samples An alternative technique to Perfectly Matched Layers to model anchor losses in MEMS resonators with undercut suspensions Rapid 3D-print-and-shrink fabrication of biodegradable microneedles with complex geometries A novel MOS radiation dosimeter based on the MEMS-made oxide layer 7th order sharp-roll-off bridged micromechanical filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1