Chao-Tsung Huang, M. Tikekar, C. Juvekar, V. Sze, A. Chandrakasan
{"title":"A 249Mpixel/s HEVC video-decoder chip for Quad Full HD applications","authors":"Chao-Tsung Huang, M. Tikekar, C. Juvekar, V. Sze, A. Chandrakasan","doi":"10.1109/ISSCC.2013.6487682","DOIUrl":null,"url":null,"abstract":"The latest video coding standard High Efficiency Video Coding (HEVC) [1] provides 50% improvement in coding efficiency compared to H.264/AVC, to meet the rising demand for video streaming, better video quality and higher resolutions. The coding gain is achieved using more complex tools such as larger and variable-size coding units (CU) in a hierarchical structure, larger transforms and longer interpolation filters. This paper presents an integrated circuit which supports Quad Full HD (QFHD, 3840×2160) video decoding for the HEVC draft standard. It addresses new design challenges for HEVC (“H.265”) with three primary contributions: 1) a system pipelining scheme which adapts to the variable-size largest coding unit (LCU) and provides a two-stage sub-pipeline for memory optimization; 2) unified processing engines to address the hierarchical coding structure and many prediction and transform block sizes in area-efficient ways; 3) a motion compensation (MC) cache which reduces DRAM bandwidth for the LCU and meets the high throughput requirements which are due to the long filters.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"3 1","pages":"162-163"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
The latest video coding standard High Efficiency Video Coding (HEVC) [1] provides 50% improvement in coding efficiency compared to H.264/AVC, to meet the rising demand for video streaming, better video quality and higher resolutions. The coding gain is achieved using more complex tools such as larger and variable-size coding units (CU) in a hierarchical structure, larger transforms and longer interpolation filters. This paper presents an integrated circuit which supports Quad Full HD (QFHD, 3840×2160) video decoding for the HEVC draft standard. It addresses new design challenges for HEVC (“H.265”) with three primary contributions: 1) a system pipelining scheme which adapts to the variable-size largest coding unit (LCU) and provides a two-stage sub-pipeline for memory optimization; 2) unified processing engines to address the hierarchical coding structure and many prediction and transform block sizes in area-efficient ways; 3) a motion compensation (MC) cache which reduces DRAM bandwidth for the LCU and meets the high throughput requirements which are due to the long filters.