PVA Factory 4.0: a hardware-driven approach to assess, develop and qualify Industry 4.0 processes and means for the manufacturing of Photo Voltaic Assemblies
E. Dawidowicz, Christiaan Beljaars, Frédéric Maloron, Daniel Bouric, Mikael Thibaudeau
{"title":"PVA Factory 4.0: a hardware-driven approach to assess, develop and qualify Industry 4.0 processes and means for the manufacturing of Photo Voltaic Assemblies","authors":"E. Dawidowicz, Christiaan Beljaars, Frédéric Maloron, Daniel Bouric, Mikael Thibaudeau","doi":"10.1109/ESPC.2019.8932093","DOIUrl":null,"url":null,"abstract":"This article presents the overall development philosophy followed to setup the PVA Factory 4.0, Thales Alenia Space (TAS) flagship for an Industry 4.0 production environment for the manufacturing and testing of Photo Voltaic Assemblies (PVA) in Belgium. Starting from a blank page, the process and means of this new facility were conceived and developed in a hardware-driven testing approach, relying on the extensive heritage of TAS for designing solar arrays and manufacturing of power electronics. Two main application cases have driven the development: (1) the heritage GEO PVA, which requires demonstrating equivalence to existing manufacturers solution in Fit-Form-Function. (2) “New Space” PVA with a requirement of high throughput, enabling a stronger design-for-manufacturing approach. This paper presents how we used a new way of assessing product quality inherited from other terrestrial industries, Advanced Product Quality Planning (APQP), to orient the development of the various process and means required to launch this new activity at TAS.","PeriodicalId":6734,"journal":{"name":"2019 European Space Power Conference (ESPC)","volume":"3 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Space Power Conference (ESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPC.2019.8932093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents the overall development philosophy followed to setup the PVA Factory 4.0, Thales Alenia Space (TAS) flagship for an Industry 4.0 production environment for the manufacturing and testing of Photo Voltaic Assemblies (PVA) in Belgium. Starting from a blank page, the process and means of this new facility were conceived and developed in a hardware-driven testing approach, relying on the extensive heritage of TAS for designing solar arrays and manufacturing of power electronics. Two main application cases have driven the development: (1) the heritage GEO PVA, which requires demonstrating equivalence to existing manufacturers solution in Fit-Form-Function. (2) “New Space” PVA with a requirement of high throughput, enabling a stronger design-for-manufacturing approach. This paper presents how we used a new way of assessing product quality inherited from other terrestrial industries, Advanced Product Quality Planning (APQP), to orient the development of the various process and means required to launch this new activity at TAS.