Bulk Modulus of Hydrocarbon Fluids After Injection with Supercritical CO2 at Reservoir Conditions

Mohamed E. Kandil
{"title":"Bulk Modulus of Hydrocarbon Fluids After Injection with Supercritical CO2 at Reservoir Conditions","authors":"Mohamed E. Kandil","doi":"10.2118/206277-ms","DOIUrl":null,"url":null,"abstract":"\n The mechanical properties of hydrocarbon reservoirs significantly depend on the elastic properties of the fluids occupying the pore space in the rock frame. Accurate data and models for the mechanical properties of fluid mixtures in a petroleum reservoir containing supercritical CO2 should be available at the same reservoir conditions for reliable design of well-completion, maximizing reservoir productivity, and minimizing risk in drilling operations. This work investigates the change in the bulk modulus of the higher hydrocarbon fluid (decane C10H22) after the injection with supercritical CO2 at reservoir conditions. The isothermal bulk modulus βT of liquids under pressure, simply defined as the first-order derivative of pressure with respect to volume, is determined in this study from the derivative of pressure with respect to density. The density data were obtained from experimental measurements of mixtures of supercritical CO2 + C10H22 for a range of CO2 mole fractions from 0 to 0.73, at temperatures from 40 to 137 °C and pressures up to 12000 psi. The isothermal derivative coefficients of the pressure as a function of density are reported for each CO2 concentration measured in this work. Common fluid-substitution models, including the Gassmann model, which is only valid for the isothermal regime, have limited predictive power because most fluids are treated as simple fluids, with their mechanical properties only characterized by their densities. However, under different environments, such as when supercritical CO2 is injected into the geological formation, the fluid phase and its mechanical properties can vary dramatically. At high pressure, the density of CO2 can equal to that of the hydrocarbon phase ρ(CO2)/ρ(C10H22) ≈ 1, while the bulk modulus of CO2 remains as low as only βT(CO2)/βT(C10H22) ≈ 7 %. Excessive decrease in the bulk modulus can easily cause subsidence, although the pore pressure and the fluid mixture density remain unchanged, even at pressures up to 4000 psi.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206277-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanical properties of hydrocarbon reservoirs significantly depend on the elastic properties of the fluids occupying the pore space in the rock frame. Accurate data and models for the mechanical properties of fluid mixtures in a petroleum reservoir containing supercritical CO2 should be available at the same reservoir conditions for reliable design of well-completion, maximizing reservoir productivity, and minimizing risk in drilling operations. This work investigates the change in the bulk modulus of the higher hydrocarbon fluid (decane C10H22) after the injection with supercritical CO2 at reservoir conditions. The isothermal bulk modulus βT of liquids under pressure, simply defined as the first-order derivative of pressure with respect to volume, is determined in this study from the derivative of pressure with respect to density. The density data were obtained from experimental measurements of mixtures of supercritical CO2 + C10H22 for a range of CO2 mole fractions from 0 to 0.73, at temperatures from 40 to 137 °C and pressures up to 12000 psi. The isothermal derivative coefficients of the pressure as a function of density are reported for each CO2 concentration measured in this work. Common fluid-substitution models, including the Gassmann model, which is only valid for the isothermal regime, have limited predictive power because most fluids are treated as simple fluids, with their mechanical properties only characterized by their densities. However, under different environments, such as when supercritical CO2 is injected into the geological formation, the fluid phase and its mechanical properties can vary dramatically. At high pressure, the density of CO2 can equal to that of the hydrocarbon phase ρ(CO2)/ρ(C10H22) ≈ 1, while the bulk modulus of CO2 remains as low as only βT(CO2)/βT(C10H22) ≈ 7 %. Excessive decrease in the bulk modulus can easily cause subsidence, although the pore pressure and the fluid mixture density remain unchanged, even at pressures up to 4000 psi.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
储层条件下注入超临界CO2后烃类流体的体积模量
油气储层的力学性质在很大程度上取决于占据岩石框架孔隙空间的流体的弹性性质。在含有超临界CO2的油藏中,需要在相同的油藏条件下获得流体混合物力学特性的准确数据和模型,以便可靠地设计完井方案,最大限度地提高油藏产能,并将钻井作业中的风险降至最低。本文研究了在储层条件下注入超临界CO2后,高烃流体(癸烷C10H22)体积模量的变化。液体在压力下的等温体积模量βT,简单地定义为压力对体积的一阶导数,在本研究中由压力对密度的导数确定。密度数据来自超临界CO2 + C10H22混合物的实验测量,CO2摩尔分数范围为0至0.73,温度为40至137℃,压力为12000 psi。报告了在这项工作中测量的每个CO2浓度的压力作为密度函数的等温导数系数。常见的流体替代模型,包括仅对等温状态有效的Gassmann模型,预测能力有限,因为大多数流体被视为简单流体,其机械特性仅由密度表征。然而,在不同的环境下,例如当超临界CO2注入地质地层时,流体相及其力学性质会发生巨大变化。在高压下,CO2的密度可以等于烃相的密度ρ(CO2)/ρ(C10H22)≈1,而CO2的体积模量仍然很低,只有βT(CO2)/βT(C10H22)≈7%。即使在高达4000psi的压力下,孔隙压力和流体混合物密度保持不变,但体积模量的过度降低很容易导致沉降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pollination Inspired Clustering Model for Wireless Sensor Network Optimization Three Phase Coil based Optimized Wireless Charging System for Electric Vehicles Wireless Power Transfer Device Based on RF Energy Circuit and Transformer Coupling Procedure Hybrid Micro-Energy Harvesting Model using WSN for Self-Sustainable Wireless Mobile Charging Application Automated Multimodal Fusion Technique for the Classification of Human Brain on Alzheimer’s Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1