Three types of forward pruning techniques to apply the alpha beta algorithm to turn-based strategy games

Naoyuki Sato, Kokolo Ikeda
{"title":"Three types of forward pruning techniques to apply the alpha beta algorithm to turn-based strategy games","authors":"Naoyuki Sato, Kokolo Ikeda","doi":"10.1109/CIG.2016.7860427","DOIUrl":null,"url":null,"abstract":"Turn-based strategy games are interesting testbeds for developing artificial players because their rules present developers with several challenges. Currently, Monte-Carlo tree search variants are often utilized to address these challenges. However, we consider it worthwhile introducing minimax search variants with pruning techniques because a turn-based strategy is in some points similar to the games of chess and Shogi, in which minimax variants are known to be effective. Thus, we introduced three forward-pruning techniques to enable us to apply alpha beta search (as a minimax search variant) to turn-based strategy games. This type of search involves fixing unit action orders, generating unit actions selectively, and limiting the number of moving units in a search. We applied our proposed pruning methods by implementing an alpha beta-based artificial player in the Turn-based strategy Academic Package (TUBSTAP) open platform of our institute. This player competed against first- and second-rank players in the TUBSTAP AI competition in 2016. Our proposed player won against the other players in five different maps with an average winning ratio exceeding 70%.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"115 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Turn-based strategy games are interesting testbeds for developing artificial players because their rules present developers with several challenges. Currently, Monte-Carlo tree search variants are often utilized to address these challenges. However, we consider it worthwhile introducing minimax search variants with pruning techniques because a turn-based strategy is in some points similar to the games of chess and Shogi, in which minimax variants are known to be effective. Thus, we introduced three forward-pruning techniques to enable us to apply alpha beta search (as a minimax search variant) to turn-based strategy games. This type of search involves fixing unit action orders, generating unit actions selectively, and limiting the number of moving units in a search. We applied our proposed pruning methods by implementing an alpha beta-based artificial player in the Turn-based strategy Academic Package (TUBSTAP) open platform of our institute. This player competed against first- and second-rank players in the TUBSTAP AI competition in 2016. Our proposed player won against the other players in five different maps with an average winning ratio exceeding 70%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将alpha - beta算法应用于回合制策略游戏的三种前向修剪技术
回合制策略游戏是开发人工玩家的有趣测试平台,因为它们的规则向开发者呈现了一些挑战。目前,蒙特卡罗树搜索变体经常用于解决这些挑战。然而,我们认为引入带有修剪技术的极大极小搜索变体是值得的,因为基于回合的策略在某些方面类似于国际象棋和Shogi游戏,其中极大极小变体是已知有效的。因此,我们引入了三种前向修剪技术,使我们能够将alpha - beta搜索(作为极大极小搜索变体)应用于回合制策略游戏。这种类型的搜索包括固定单位行动顺序,选择性地生成单位行动,以及限制搜索中移动单位的数量。我们通过在我们研究所的回合制策略学术包(TUBSTAP)开放平台中实现基于alpha beta的人工玩家来应用我们提出的修剪方法。这位选手在2016年的TUBSTAP AI比赛中与一、二线选手竞争。我们建议的玩家在5个不同的地图中战胜其他玩家,平均胜率超过70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human gesture classification by brute-force machine learning for exergaming in physiotherapy Evolving micro for 3D Real-Time Strategy games Constrained surprise search for content generation Design influence on player retention: A method based on time varying survival analysis Deep Q-learning using redundant outputs in visual doom
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1