Crystallization and electrochemical corrosion behaviors of amorphous and nanocrystalline Fe-based alloys

Xiang Li, Yuxin Wang, Chunfeng Du, Chenkui Li, B. Yan
{"title":"Crystallization and electrochemical corrosion behaviors of amorphous and nanocrystalline Fe-based alloys","authors":"Xiang Li, Yuxin Wang, Chunfeng Du, Chenkui Li, B. Yan","doi":"10.1109/INEC.2010.5425104","DOIUrl":null,"url":null,"abstract":"Amorphous Fe<inf>73.5</inf>Si<inf>13.5</inf>B<inf>9</inf>Nb<inf>3</inf>Cu<inf>1</inf> alloy was prepared by the chill block melt-spinning process and nanocrystalline alloy was obtained by annealing. The crystallization behavior was analysed by DSC, XRD and TEM. The electrochemical corrosion behaviors in different annealed states were performed by linear polarization method and electrochemical impedance spectroscopy in 1mol/L HCl solution. The results show that the crystallization of amorphous alloy occurs in the two steps. Some nanometer crystals appear when annealing in 550°C and 600°C, respectively with grain size 13nm and 15nm. The nanocrystalline alloy has higher corrosion potential and lower anodic current density than amorphous alloy. It indicates that nanocrystalline alloy has a higher corrosion resistance. Amorphous and nanocrystalline Fe<inf>73.5</inf>Si<inf>13.5</inf>B<inf>9</inf>Nb<inf>3</inf>Cu<inf>1</inf> alloys both consisted of only single semi-circle. The charge transfer reaction resistances increases as annealing temperature rises.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"143 1","pages":"962-963"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5425104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Amorphous Fe73.5Si13.5B9Nb3Cu1 alloy was prepared by the chill block melt-spinning process and nanocrystalline alloy was obtained by annealing. The crystallization behavior was analysed by DSC, XRD and TEM. The electrochemical corrosion behaviors in different annealed states were performed by linear polarization method and electrochemical impedance spectroscopy in 1mol/L HCl solution. The results show that the crystallization of amorphous alloy occurs in the two steps. Some nanometer crystals appear when annealing in 550°C and 600°C, respectively with grain size 13nm and 15nm. The nanocrystalline alloy has higher corrosion potential and lower anodic current density than amorphous alloy. It indicates that nanocrystalline alloy has a higher corrosion resistance. Amorphous and nanocrystalline Fe73.5Si13.5B9Nb3Cu1 alloys both consisted of only single semi-circle. The charge transfer reaction resistances increases as annealing temperature rises.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非晶和纳米晶铁基合金的结晶和电化学腐蚀行为
采用冷块熔融纺丝法制备了Fe73.5Si13.5B9Nb3Cu1非晶态合金,退火后得到了纳米晶合金。采用DSC、XRD和TEM分析了结晶行为。在1mol/L HCl溶液中,采用线性极化法和电化学阻抗谱研究了不同退火状态下的电化学腐蚀行为。结果表明,非晶合金的结晶过程分为两个阶段。在550℃和600℃退火时,出现纳米级晶体,晶粒尺寸分别为13nm和15nm。纳米晶合金比非晶合金具有更高的腐蚀电位和更低的阳极电流密度。表明纳米晶合金具有较高的耐蚀性。非晶和纳米晶Fe73.5Si13.5B9Nb3Cu1合金均由单个半圆组成。电荷转移反应电阻随退火温度的升高而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A synthetic strategy of quantum dot-bioconjugate Effects of laser drilling through silicon substrate on MOSFET device characteristics The study of Y2O3-doping-induced size diversification of ZrO2 nanocrystals Antibacterial, antiviral, and antibiofilms nanoparticles High efficiency InGaP/GaAs solar cell with Sub-wavelength structure on AlInP window layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1