Claudia Coscia, Esther Molina-Montes, Raquel Benítez, Evangelina López de Maturana, Alfonso Muriel, Núria Malats, Teresa Pérez
{"title":"New proposal to address mediation analysis interrogations by using genetic variants as instrumental variables","authors":"Claudia Coscia, Esther Molina-Montes, Raquel Benítez, Evangelina López de Maturana, Alfonso Muriel, Núria Malats, Teresa Pérez","doi":"10.1002/gepi.22519","DOIUrl":null,"url":null,"abstract":"<p>The application of causal mediation analysis (CMA) considering the mediation effect of a third variable is increasing in epidemiological studies; however, this requires fitting strong assumptions on confounding bias. To address this limitation, we propose an extension of CMA combining it with Mendelian randomization (MRinCMA). We applied the new approach to analyse the causal effect of obesity and diabetes on pancreatic cancer, considering each factor as potential mediator. To check the performance of MRinCMA under several conditions/scenarios, we used it in different simulated data sets and compared it with structural equation models. For continuous variables, MRinCMA and structural equation models performed similarly, suggesting that both approaches are valid to obtain unbiased estimates. When noncontinuous variables were considered, MRinCMA presented, overall, lower bias than structural equation models. By applying MRinCMA, we did not find any evidence of causality of obesity or diabetes on pancreatic cancer. With this new methodology, researchers would be able to address CMA hypotheses by appropriately accounting for the confounding bias assumption regardless of the conditions used in their studies in different settings.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"47 3","pages":"287-300"},"PeriodicalIF":1.7000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22519","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22519","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of causal mediation analysis (CMA) considering the mediation effect of a third variable is increasing in epidemiological studies; however, this requires fitting strong assumptions on confounding bias. To address this limitation, we propose an extension of CMA combining it with Mendelian randomization (MRinCMA). We applied the new approach to analyse the causal effect of obesity and diabetes on pancreatic cancer, considering each factor as potential mediator. To check the performance of MRinCMA under several conditions/scenarios, we used it in different simulated data sets and compared it with structural equation models. For continuous variables, MRinCMA and structural equation models performed similarly, suggesting that both approaches are valid to obtain unbiased estimates. When noncontinuous variables were considered, MRinCMA presented, overall, lower bias than structural equation models. By applying MRinCMA, we did not find any evidence of causality of obesity or diabetes on pancreatic cancer. With this new methodology, researchers would be able to address CMA hypotheses by appropriately accounting for the confounding bias assumption regardless of the conditions used in their studies in different settings.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.