Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY Annales De L Institut Henri Poincare-probabilites Et Statistiques Pub Date : 2013-09-25 DOI:10.1214/14-AIHP611
G. Prato, A. Lunardi
{"title":"Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains","authors":"G. Prato, A. Lunardi","doi":"10.1214/14-AIHP611","DOIUrl":null,"url":null,"abstract":"We consider an elliptic Kolmogorov equationu − Ku = f in a convex subset C of a separable Hilbert space X. The Kolmogorov operator K is a realization of u 7→ 1 Tr (D 2 u(x)) + hAx − DU(x),Du(x)i, A is a self-adjoint operator in X and U : X 7→R ∪ {+∞} is a convex function. We prove that for � > 0 and f ∈ L 2 (C,�) the weak solution u belongs to the Sobolev space W 2,2 (C,�), whereis the log-concave measure associated to the system. Moreover we prove maximal estimates on the gradient of u, that allow to show that u satisfies the Neumann boundary condition in the sense of traces at the boundary of C. The general results are applied to Kolmogorov equations of reaction-diffusion and Cahn-Hilliard stochastic PDEs in convex sets of suitable Hilbert spaces.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"34 1","pages":"1102-1123"},"PeriodicalIF":1.2000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/14-AIHP611","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 23

Abstract

We consider an elliptic Kolmogorov equationu − Ku = f in a convex subset C of a separable Hilbert space X. The Kolmogorov operator K is a realization of u 7→ 1 Tr (D 2 u(x)) + hAx − DU(x),Du(x)i, A is a self-adjoint operator in X and U : X 7→R ∪ {+∞} is a convex function. We prove that for � > 0 and f ∈ L 2 (C,�) the weak solution u belongs to the Sobolev space W 2,2 (C,�), whereis the log-concave measure associated to the system. Moreover we prove maximal estimates on the gradient of u, that allow to show that u satisfies the Neumann boundary condition in the sense of traces at the boundary of C. The general results are applied to Kolmogorov equations of reaction-diffusion and Cahn-Hilliard stochastic PDEs in convex sets of suitable Hilbert spaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无穷维梯度系统的Neumann问题中的极大Sobolev正则性
考虑可分离Hilbert空间x的凸子集C中的椭圆型Kolmogorov方程u−Ku = f, Kolmogorov算子K是u 7→1 Tr (d2 u(x)) + hAx−DU(x), DU(x) i, a是x中的自伴随算子,u中的x 7→R∪{+∞}是凸函数。证明了对于> 0且f∈l2 (C,),弱解u属于Sobolev空间w2,2 (C,),其中是与系统相关的对数凹测度。此外,我们证明了u的梯度上的极大估计,使得u在c边界处的迹迹意义上满足Neumann边界条件。一般结果应用于合适Hilbert空间凸集上的反应扩散Kolmogorov方程和Cahn-Hilliard随机偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
期刊最新文献
Limit distributions of branching Markov chains Tightness of discrete Gibbsian line ensembles with exponential interaction Hamiltonians Functional CLT for non-Hermitian random matrices Reflecting Brownian motion in generalized parabolic domains: Explosion and superdiffusivity From the asymmetric simple exclusion processes to the stationary measures of the KPZ fixed point on an interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1