{"title":"Development of a UHF transponder for geological monitoring of boreholes drilled through ice sheets using phase-sensitive FMCW radar","authors":"A. Amiri, P. Brennan, L. B. Lok","doi":"10.1109/MWSYM.2017.8058982","DOIUrl":null,"url":null,"abstract":"This paper presents an active UHF transponder designed for geological monitoring of boreholes drilled through ice sheets. It forms part of a phase-sensitive frequency modulated continuous wave (FMCW) radar system to measure the horizontal position of a borehole with depth. To distinguish the transponder response from stationary clutter, the transponder modulates the received signal before re-transmission to the surface radars. The transponder operates from 292 to 492 MHz with a gain around 18 dB. The transponder employs two novel antennas optimized for deployment within a 15 cm diameter borehole. The simulation and indoor laboratory measurement results of the transponder design are presented.","PeriodicalId":6481,"journal":{"name":"2017 IEEE MTT-S International Microwave Symposium (IMS)","volume":"53 1","pages":"1746-1749"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave Symposium (IMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2017.8058982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an active UHF transponder designed for geological monitoring of boreholes drilled through ice sheets. It forms part of a phase-sensitive frequency modulated continuous wave (FMCW) radar system to measure the horizontal position of a borehole with depth. To distinguish the transponder response from stationary clutter, the transponder modulates the received signal before re-transmission to the surface radars. The transponder operates from 292 to 492 MHz with a gain around 18 dB. The transponder employs two novel antennas optimized for deployment within a 15 cm diameter borehole. The simulation and indoor laboratory measurement results of the transponder design are presented.