Statistical evaluation of snow accumulation and depletion from remotely sensed MODIS snow time series data using the SARIMA model

Mohit Kumar, R. K. Tiwari, K. Kumar, K. S. Rautela
{"title":"Statistical evaluation of snow accumulation and depletion from remotely sensed MODIS snow time series data using the SARIMA model","authors":"Mohit Kumar, R. K. Tiwari, K. Kumar, K. S. Rautela","doi":"10.2166/aqua.2023.231","DOIUrl":null,"url":null,"abstract":"\n In the remote and challenging terrain of the Himalayan region, accurate measurement of cyclic snow accumulation and depletion is a significant challenge. To overcome this, an attempt has been made in the present study by applying a statistical analysis of MODIS snow time series data with the Seasonal Autoregressive Integrated Moving Average (SARIMA) model from 2003 to 2018 over the Beas river basin. The Box–Jenkins methodology of forecasting is based on the identification using seasonality, stationarity, ACF, and PACF plots; and estimation based on maximum likelihood techniques; and the last diagnostic checking based on the residual and error values have been used. Later, forecasting models have been proposed separately for the snow accumulation period (October–February) as (1,1,1) (0,1,3)19 and for the snow depletion period (March–September) as (1,1,1) (1,1,2)27 after calibration of the data (2003–2015) and the same were then validated using data (2016–2018). The accuracy assessment of the models has been checked using performance criteria like AIC, MSE, and RSS. The comparison of the forecasting models with the observed data showed a good agreement with R2 of 0.83 and 0.89 for snow accumulation and snow depletion, respectively. This research highlights the potential of utilizing satellite data and statistical modeling to address the challenges of monitoring snow cover in remote and inaccessible regions.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2023.231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the remote and challenging terrain of the Himalayan region, accurate measurement of cyclic snow accumulation and depletion is a significant challenge. To overcome this, an attempt has been made in the present study by applying a statistical analysis of MODIS snow time series data with the Seasonal Autoregressive Integrated Moving Average (SARIMA) model from 2003 to 2018 over the Beas river basin. The Box–Jenkins methodology of forecasting is based on the identification using seasonality, stationarity, ACF, and PACF plots; and estimation based on maximum likelihood techniques; and the last diagnostic checking based on the residual and error values have been used. Later, forecasting models have been proposed separately for the snow accumulation period (October–February) as (1,1,1) (0,1,3)19 and for the snow depletion period (March–September) as (1,1,1) (1,1,2)27 after calibration of the data (2003–2015) and the same were then validated using data (2016–2018). The accuracy assessment of the models has been checked using performance criteria like AIC, MSE, and RSS. The comparison of the forecasting models with the observed data showed a good agreement with R2 of 0.83 and 0.89 for snow accumulation and snow depletion, respectively. This research highlights the potential of utilizing satellite data and statistical modeling to address the challenges of monitoring snow cover in remote and inaccessible regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SARIMA模型的遥感MODIS积雪时间序列积雪积累和耗竭的统计评价
在喜马拉雅地区的偏远和具有挑战性的地形,准确测量循环积雪和损耗是一个重大的挑战。为了克服这一问题,本研究利用2003 - 2018年季节自回归综合移动平均(SARIMA)模型对双鱼河流域MODIS积雪时间序列数据进行了统计分析。Box-Jenkins预测方法基于季节性、平稳性、ACF和PACF图的识别;以及基于极大似然技术的估计;最后利用残差值和误差值进行诊断检查。随后,在对2003-2015年数据进行校正后,分别提出了积雪期(10 - 2月)的预测模型为(1,1,1)(0,1,3)19和积雪枯竭期(3 - 9月)的预测模型为(1,1,1)(1,1,2)27,并利用2016-2018年数据进行了验证。使用AIC、MSE和RSS等性能标准检查了模型的准确性评估。预报模式与实测资料的对比表明,积雪和雪损的R2分别为0.83和0.89,符合较好。这项研究强调了利用卫星数据和统计建模来解决监测偏远和难以到达地区积雪的挑战的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of oxidative damage in Escherichia coli caused by epigallocatechin gallate (EGCG) in the presence of calcium ions Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies Assessment of water demand and potential water sources to face future water scarcity of hilly regions A data quality assessment framework for drinking water distribution system water quality time series datasets Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1